在线观看av毛片亚洲_伊人久久大香线蕉成人综合网_一级片黄色视频播放_日韩免费86av网址_亚洲av理论在线电影网_一区二区国产免费高清在线观看视频_亚洲国产精品久久99人人更爽_精品少妇人妻久久免费

首頁 > 文章中心 > 正文

血液循環(huán)建模管理

前言:本站為你精心整理了血液循環(huán)建模管理范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。

血液循環(huán)建模管理

摘要:應(yīng)用功率鍵合圖方法,建立了一種多分支血液循環(huán)系統(tǒng)的計算機仿真模型,即描述血液循環(huán)系統(tǒng)內(nèi)血流動力學(xué)變量變化規(guī)律的狀態(tài)方程。該仿真模型較為細(xì)致地刻畫了血液循環(huán)系統(tǒng)的生理特性,形成了較完整的人體血液循環(huán)系統(tǒng)的計算機模型,此模型可模擬血液循環(huán)系統(tǒng)的生理和病理特性,得出相應(yīng)的心血管動力學(xué)仿真數(shù)據(jù)和波形,為進(jìn)行血液循環(huán)系統(tǒng)生理和病理的醫(yī)學(xué)研究提供了新的研究手段。

關(guān)鍵詞:血液循環(huán)系統(tǒng)計算機仿真功率鍵合圖法

0引言

功率鍵合圖法是一種系統(tǒng)動力學(xué)建模方法,它以圖形方法來表示、描述系統(tǒng)動態(tài)結(jié)構(gòu),是對流體系統(tǒng)進(jìn)行動態(tài)數(shù)字仿真時有效的建模工具。通過已有的研究工作表明,功率鍵合圖方法可以較好地應(yīng)用于生物流體系統(tǒng)仿真,特別是人體循環(huán)系統(tǒng)的建模和數(shù)字仿真[10]。

我們在以前的工作當(dāng)中,建立了一個簡化的血液循環(huán)系統(tǒng)模型[10],驗證了功率鍵合圖法的可行性和有效性。鍵合圖建模方法的優(yōu)點是直觀形象,便于獲得狀態(tài)空間方程,有利于數(shù)值化計算,避免了電模擬方法中推導(dǎo)狀態(tài)方程困難的弱點。本文對血液循環(huán)系統(tǒng)進(jìn)行了較細(xì)致和全面的劃分,建立了一個包括動脈系統(tǒng)、靜脈系統(tǒng)、心臟(左、右心室和心房)以及冠脈循環(huán)、外周循環(huán)的多分支血液循環(huán)系統(tǒng)仿真模型。

應(yīng)用功率鍵合圖方法對血液循環(huán)系統(tǒng)進(jìn)行建模和仿真的基本規(guī)則是,(1)把血液循環(huán)系統(tǒng)的結(jié)構(gòu)及各主要動態(tài)影響因素以圖示模型形式,即功率鍵合圖加以表示,(2)從功率鍵合圖出發(fā),建立系統(tǒng)的動態(tài)數(shù)學(xué)模型——狀態(tài)空間方程,(3)在數(shù)字計算機上對狀態(tài)方程進(jìn)行求解。

1多分支血液循環(huán)系統(tǒng)模型的建立

1.1系統(tǒng)描述

血液循環(huán)系統(tǒng)模型如圖1所示[4]。在心血管循環(huán)系統(tǒng)中,血液在心臟“泵”的作用下所進(jìn)行的循環(huán)流動,可以看作是一種功率流的流動、傳輸、分配和轉(zhuǎn)換的過程。血液在左右心室有節(jié)律地收縮作用下,被泵向人體的各個部分,其中包括:體循環(huán)區(qū)(血液由左心室經(jīng)主動脈、大動脈、外周循環(huán)區(qū)和腔靜脈,回到右心房),肺循環(huán)區(qū)(血液由右心室流經(jīng)肺動脈和肺靜脈到左心房。),腹部內(nèi)循環(huán),頸部和頭部循環(huán),以及冠脈循環(huán)等。在心房和心室、心室和主動脈之間存在著防止血液倒流的膜瓣,如二尖瓣、三尖瓣、主動脈瓣等。

圖1血液循環(huán)系統(tǒng)模型

1.2功率鍵合圖模型

應(yīng)用功率鍵合圖建模方法的第一步是將原系統(tǒng)表達(dá)為功率鍵合圖的圖示模型。功率鍵合圖由功率鍵、結(jié)點和作用元等主要元素構(gòu)成,多分支血液循環(huán)系統(tǒng)的功率鍵合圖如圖2所示。

rnvchvrhhcharna

圖2多分支血液循環(huán)系統(tǒng)功率鍵合圖模型(此圖有省略)

參考圖2,繪制多分支血液循環(huán)系統(tǒng)功率鍵合圖的步驟可簡述如下:

(1)根據(jù)對多分支循環(huán)系統(tǒng)各個功率流程分支的分析,依次確定各0結(jié)點和1結(jié)點。

0結(jié)點表示集總的流容容腔,如心室腔、主動脈彈性腔,在0結(jié)點處血液壓力為等值,而該結(jié)點輸入的血流量等于輸出的血流量。1結(jié)點表示集總的流阻管路或流感管路,如大動脈血管,在1結(jié)點處血流量為等值,而該結(jié)點的壓力降等于上流壓力值減去下流壓力值。在圖2的循環(huán)系統(tǒng)模型中共有15個0結(jié)點和21個1結(jié)點。

(2)畫上各結(jié)點周圍的功率鍵,并標(biāo)注功率流向。

功率鍵是帶有箭頭和因果線表示功率的線段。本模型中構(gòu)成功率的兩個變量是血壓和血流。箭頭表示系統(tǒng)作用元中的功率流向,即循環(huán)血液的流動方向。

(3)在功率鍵的一端標(biāo)注上相應(yīng)的c、r、l作用元。

為了能夠全面、細(xì)致地刻畫系統(tǒng)特性,本模型中應(yīng)用了三種作用元:流容、流阻和流感。

流容反映血管的順應(yīng)性,畫在0結(jié)點上,用c來表示,簡稱c元。例如,圖2中的cta、car、cvn、cpa、cpv是分別表示與圖1相對應(yīng)部分的胸主動脈、大動脈、腔靜脈、肺動脈和肺靜脈順應(yīng)性的流容。

流感反映血流的慣性特性,畫在1結(jié)點上,用l來表示,簡稱l元。如圖2中的lta、lar、lvn、lpa、lpv、lco是分別表示相對應(yīng)的胸主動脈、大動脈、腔靜脈、肺動脈、肺靜脈及冠狀動脈血流慣性的流感。

流阻反映血流粘滯阻力的特性,簡稱r元,畫在1結(jié)點上。例如圖2中rta、rar、rvn、rpa、rpv和rco是分別表示胸主動脈、大動脈、腔靜脈、肺動脈、肺靜脈及冠狀動脈血流粘滯阻力的阻性作用元。

(4)在各功率鍵上標(biāo)注因果線,以便于建立系統(tǒng)的數(shù)學(xué)模型。

功率鍵上的因果線表示各作用元上流量與壓力兩變量之間的因果關(guān)系,確定了自變量和因變量,便于建立系統(tǒng)的狀態(tài)方程。對于c元,其功率鍵上兩個變量間,自變量是流量,因變量是壓力;對于l元和r元,其功率鍵上兩個變量間壓力是自變量,流量是因變量。

經(jīng)過以上步驟,就完成了循環(huán)系統(tǒng)的功率鍵合圖模型??梢钥闯?,鍵合圖模型就是通過結(jié)點、功率鍵和作用元這些元素對心血管循環(huán)系統(tǒng)直觀而形象的描述和反映。在將循環(huán)系統(tǒng)翻譯成鍵合圖模型后,就可以方便、有條不紊地推導(dǎo)系統(tǒng)數(shù)學(xué)模型。

2系統(tǒng)數(shù)學(xué)模型

功率鍵合圖建模方法的第二步是推導(dǎo)系統(tǒng)的數(shù)學(xué)模型。在推導(dǎo)系統(tǒng)動態(tài)過程的數(shù)學(xué)模型——狀態(tài)方程時,首先要確定狀態(tài)變量。應(yīng)用鍵合圖方法建模的方便之處就在于對狀態(tài)變量的確定有一定之規(guī),可遵循固定的法則。

由于系統(tǒng)的狀態(tài)方程是一階微分方程組,在其變量間有導(dǎo)數(shù)關(guān)系,而在鍵合圖中,只有流容c和流感l(wèi)作用元中的兩個變量間才有導(dǎo)數(shù)或積分關(guān)系,所以應(yīng)當(dāng)從c元和l元各自的變量間取一個變量作為狀態(tài)變量。

對于c元,自變量為流量,因變量為壓力,其關(guān)系為:

(1)

對于l元,自變量為壓力,因變量為流量,其關(guān)系為:

(2)

對于r元,流量和壓力之間的關(guān)系有:

(3)

根據(jù)規(guī)則,取c元功率鍵上的壓力變量p和l元功率鍵上的流量變量q為狀態(tài)變量,狀態(tài)變量的一階導(dǎo)數(shù)即為狀態(tài)方程。

因此,對于0結(jié)點,由(1)式兩邊取導(dǎo)數(shù)可得:

(4)

其中,是第i個0結(jié)點處的壓力,為輸入血流量,為輸出血流量,是第i個0結(jié)點處的流容。

對于1結(jié)點,由(2)式和(3)式可得:

(5)

其中,是第i個1結(jié)點處的血流量,為上流壓力,為下流壓力,和分別是第i個1結(jié)點處的流阻和流感。

對每個0節(jié)點和1結(jié)點都建立類似(4)和(5)的關(guān)系式,則可以得到系統(tǒng)的數(shù)學(xué)模型。本模型的數(shù)學(xué)模型是36階的狀態(tài)空間方程,即模型由36個一階微分方程組成。下面列出了主動脈循環(huán)部分的狀態(tài)方程:

(6)

(7)

(8)

(9)

(10)

(11)

其中,cta、caa、car分別是胸主動脈、腹主動脈、外周動脈的流容;lta、laa、lar、lvn分別是胸主動脈、腹主動脈、外周動脈和腔靜脈的流感;rta、raa、rsa、rpc和rsv是分別表示胸主動脈、腹主動脈、外周動脈、外周循環(huán)和腔靜脈的流阻。ptao、paao、psar和qtao、qaao、qsar分別是動脈循環(huán)中的胸主動脈、腹主動脈、外周動脈部分的壓力和流量。

血液循環(huán)是由心臟的舒張-收縮動作推動的,本文采用了心室時變流容來表示這種舒張-收縮動作,是時間的周期函數(shù)。

對于循環(huán)系統(tǒng)中的膜瓣作用,可以作為模型的約束條件加入到系統(tǒng)數(shù)學(xué)模型當(dāng)中:當(dāng)血液正向流動時,膜瓣阻力為一較小的數(shù)值;當(dāng)血液反向流動時,膜瓣阻力為無窮大,即阻止血液倒流。

本模型中的流容、流阻和流感參數(shù)參照文獻(xiàn)[4]。

3計算機仿真

本文采用4階定步長runge-kutta法來求解模型的狀態(tài)方程,設(shè)定仿真步長為0.0001s,在奔騰586pc機上進(jìn)行數(shù)字仿真。

當(dāng)加入邊界約束條件,設(shè)置各狀態(tài)變量初始參數(shù)之后,狀態(tài)變量便以狀態(tài)方程為基礎(chǔ)被同步地展開。在每一步,血液循環(huán)系統(tǒng)各部分的壓力和流量值根據(jù)狀態(tài)方程被分別計算出來。待仿真數(shù)據(jù)變化穩(wěn)定后,由系統(tǒng)輸出方程可以得到每個心動周期內(nèi)系統(tǒng)各部分的血壓p、血流量q、血液容量v以及心輸出量co和射血分?jǐn)?shù)ef等各項生理參數(shù)數(shù)值,從而可以對多項生理特性進(jìn)行計算機仿真。本文進(jìn)行了正常生理條件下和高血壓、血管剛性的病理條件下的生理特性仿真。

3.1正常生理狀態(tài)仿真

設(shè)定各狀態(tài)變量的初始參數(shù)為正常值[4,5],對系統(tǒng)模型進(jìn)行計算,即可得到正常生理條件下,血液循環(huán)系統(tǒng)血流動力學(xué)參數(shù)的仿真數(shù)據(jù)。

圖3給出了在正常狀態(tài)時,三個心動周期(每個心動周期為0.8秒)內(nèi)的左心室壓力和主動脈血的仿真波形壓的仿真波形。從壓力仿真波形圖中可以看出,心室壓力和主動脈壓力在每個心動周期內(nèi)的壓力脈動是十分顯著的。圖4是肺動脈血壓和肺靜脈血壓的仿真波形。肺動脈壓的壓力脈動也較為顯著,而在肺靜脈中,血液的壓力脈動就不很明顯。

圖3左心室和主動脈的壓力變化仿真

140

01.6

t/s

(a)左心室血液容量的周期變化

140

01.6

t/s

(b)右心室血液容量的周期變化

圖4肺動脈和肺靜脈的壓力變化仿真

在表1中給出了血液循環(huán)系統(tǒng)主要血流動力學(xué)變量在正常狀態(tài)時條件下的仿真數(shù)值。由生理學(xué)規(guī)律可知,左心室收縮壓范圍一般在17~18kpa,主動脈壓力范圍在12~17kpa,肺動脈壓在2kpa左右。因此,仿真所得波形和數(shù)據(jù)與實際的生理規(guī)律是相符的。

表1中還給出了評定心臟功能的兩個有用的指標(biāo):心輸出量co和射血分?jǐn)?shù)ef,仿真所得到的數(shù)據(jù)為:心輸出量5256ml/min,射血分?jǐn)?shù)61%,都符合實際的生理規(guī)律。

表1血液循環(huán)系統(tǒng)主要血流動力學(xué)變量計算機仿真數(shù)值

仿真實驗

項目

左心室壓

峰值

lvpp

(kpa)

主動脈壓

ap

(kpa)

左心室舒

張末容積

lvedv

(ml)

右心房壓

rap

(kpa)

肺動脈壓

pap

(kpa)

右心室舒

張末容積

rvedv

(ml)

冠脈血流

cf

(ml/min)

心輸出量

co

(ml/min)

射血分?jǐn)?shù)

ef

(%)

正常

17.96

16.82

123

0.6

2.13

130

228

5256

61

高血壓

21.28

18.63

126

0.6

2.26

130

230

4989

54

血管剛性

19.29

17.10

124

0.6

2.13

130

229

5010

58

3.2高血壓仿真

由于動脈管徑窄縮,或是動脈壁增厚等原因常常會使動脈血管的阻力增大,使得心臟在收縮期向主動脈噴血時耗費更多的功,從而引起高血壓癥狀。因此在本實驗中,增大鍵合圖模型中的主動脈和外周動脈的流阻rta、raa、rar的數(shù)值,可以實現(xiàn)高血壓的仿真。

表1中給出了高血壓時各血流動力學(xué)變量的仿真數(shù)據(jù)。從仿真數(shù)據(jù)中可以看到,左心室壓和主動脈壓分別達(dá)到21.28kpa和18.63kpa,血壓值明顯升高,但是心輸出量4989ml/min和射血分?jǐn)?shù)54%的數(shù)值卻比正常狀態(tài)顯著降低,這表明高血壓時心臟的功能在減弱。

3.3血管剛性仿真

血管順應(yīng)性的倒數(shù)1/c被稱為血管剛性,血管剛性越大,血管順應(yīng)性則降低,使心室射血阻抗增大,導(dǎo)致心室噴射壓力和動脈血壓升高,心輸出量和射血分?jǐn)?shù)降低。在本實驗中,將主動脈與外周血管的流容cta、caa、car分別降低至正常值的50%,可以模擬血管順應(yīng)性降低時的生理特性。

表1給出了各項血流動力學(xué)變量的計算機仿真數(shù)值。從仿真數(shù)據(jù)中可以看到,左心室壓19.29kpa和主動脈壓17.10kpa偏高,而心輸出量5010ml/min和射血分?jǐn)?shù)58%的數(shù)值比正常數(shù)值降低,符合實際的生理規(guī)律。

4討論

本文提出了一個多分支血液循環(huán)系統(tǒng)功率鍵合圖模型,敘述了以鍵合圖建模方法、狀態(tài)空間分析和計算機仿真為基礎(chǔ)的心血管動力學(xué)分析方法,并用該模型進(jìn)行了基本的生理仿真實驗。

將功率鍵合圖建模方法應(yīng)用于人體循環(huán)系統(tǒng)的仿真研究,能夠較好地處理循環(huán)系統(tǒng)仿真中的建模問題,特別是從功率鍵合圖可以很方便地推導(dǎo)出狀態(tài)空間方程,從而正確的描述系統(tǒng)的動態(tài)特征。這一點特別有利于在醫(yī)學(xué)研究人員中推廣計算機仿真技術(shù)這種有用的研究手段。同時,這種仿真模型對循環(huán)系統(tǒng)特性的刻畫也較為全面和細(xì)致,生理仿真的實驗結(jié)果在波形和定量上與人體檢測的結(jié)果是相吻合的。結(jié)合臨床對各項生理特性進(jìn)行計算機仿真,將為醫(yī)學(xué)研究提供一種新的強有力的研究手段。

參考文獻(xiàn)

[1]baijing,yingk,jarond.cardiovascularresponsestoexternalcounterpulsation:acomputersimulation[j].med&bioleng&comput,1992,30:317-323.

[2]harnkazutsurnta,toshirasato,masuoshiratakemathematicalmodelofcardiovascularmechanicsfordiagnosticanalgsisandtreatmentofheartfailure:part1modeldescriptionandtheoreticalanalysis[j].med&bioleng&comput,1994,32:3-11.

[3]engvallj,karissionm,askp.importanceofcollateralvesselsinaorticcoarctation:computersimulationatrestandexerciseusingtransmissionlineelements[j]med&bioleng&comput,1994,32:s115-s122.

[4]goldsteiny,beyarr,sidemans.influnceofpleuralpressurevariationoncardiovascularsystemdynamics:amodelstudy[j]med&bioleng&comput,1988,26:251-259.

[5]beyarr,kishony,sidemans,puterstudiesofsystemicandreginalbloodflowmechanismsduringcardiopulmonaryresuscitation[j]med&bioleng&comput,1984,22:499-506.

[6]beyarr,sidemans,dinnaru.cardioacassistbyintrathoracicandabdominalpressurevariations:amathematicalstudy[j]med&bioleng&comput,1984,22:507-515.

[7]何瑞榮.心血管生理學(xué)[m].北京:人民衛(wèi)生出版社,1987.10-76.

[8]卡諾普dc,羅森堡rc.系統(tǒng)動力學(xué)——應(yīng)用鍵合圖方法[m].北京:機械工業(yè)出版社,1985.127-158.

[9]劉能宏,田樹軍.液壓系統(tǒng)動態(tài)特性數(shù)字仿真[m].大連:大連理工大學(xué)出版社,1993.20-148.

[10]馮宇軍,田樹軍.功率鍵合圖法在血液循環(huán)系統(tǒng)計算機仿真中的應(yīng)用[j].大連理工大學(xué)學(xué)報,1999,39(3):429-433.

studyofmodelingandsimulationofthemulti-branchbloodsystem

abstract:bythepowerbandgraph(pbg)method,acomputersimulationmodelofthemulti-branchbloodcirculationsystemispresented,whichdescribesthebloodfluiddynamiclawinthebloodsystembythestateequation.aminutedescriptionisgivedbythemodelonphysiologicalcharactersofbloodcirculationsystem(bcs).anintegratedcomputermodelonbcshasbeenestablished.themodelcansimulatephysiologicalcharactersofbloodcirculationsystem,andgetthesimulationdataandcurvesofbcshemodynamicsvaribles.themodelcanbeusedwidelyinthefieldofphysiologicalsystemsimulationstudy,themedicalstudyandmedicalaideducation.

keywords:bloodcirculationsystem,computersimulation,powerbandgraphmethod

资溪县| 宜章县| 株洲市| 柳河县| 岐山县| 常熟市| 北票市| 洱源县| 梧州市| 桐城市| 玉溪市| 五寨县| 巴塘县| 揭西县| 龙泉市| 勐海县| 灵寿县| 从化市| 十堰市| 绥棱县| 夏邑县| 壤塘县| 定州市| 鹤壁市| 广宁县| 镇远县| 昌吉市| 合作市| 翁牛特旗| 新郑市| 武冈市| 朝阳县| 尚志市| 临夏县| 合水县| 延安市| 溧水县| 互助| 东安县| 长海县| 荥阳市|