在线观看av毛片亚洲_伊人久久大香线蕉成人综合网_一级片黄色视频播放_日韩免费86av网址_亚洲av理论在线电影网_一区二区国产免费高清在线观看视频_亚洲国产精品久久99人人更爽_精品少妇人妻久久免费

首頁 > 文章中心 > 正文

圓周角數(shù)學教案

前言:本站為你精心整理了圓周角數(shù)學教案范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。

第一課時圓周角(一)

教學目標:

(1)理解圓周角的概念,把握圓周角的兩個特征、定理的內(nèi)容及簡單應(yīng)用;

(2)繼續(xù)培養(yǎng)學生觀察、分析、想象、歸納和邏輯推理的能力;

(3)滲透由“非凡到一般”,由“一般到非凡”的數(shù)學思想方法.

教學重點:圓周角的概念和圓周角定理

教學難點:圓周角定理的證實中由“一般到非凡”的數(shù)學思想方法和完全歸納法的數(shù)學思想.

教學活動設(shè)計:(在教師指導下完成)

(一)圓周角的概念

1、復習提問:

(1)什么是圓心角?

答:頂點在圓心的角叫圓心角.

(2)圓心角的度數(shù)定理是什么?

答:圓心角的度數(shù)等于它所對弧的度數(shù).(如右圖)

2、引題圓周角:

假如頂點不在圓心而在圓上,則得到如左圖的新的角∠ACB,它就是圓周角.(如右圖)(演示圖形,提出圓周角的定義)

定義:頂點在圓周上,并且兩邊都和圓相交的角叫做圓周角

3、概念辨析:

教材P93中1題:判定下列各圖形中的是不是圓周角,并說明理由.

學生歸納:一個角是圓周角的條件:①頂點在圓上;②兩邊都和圓相交.

(二)圓周角的定理

1、提出圓周角的度數(shù)問題

問題:圓周角的度數(shù)與什么有關(guān)系?

經(jīng)過電腦演示圖形,讓學生觀察圖形、分析圓周角與圓心角,猜想它們有無關(guān)系.引導學生在建立關(guān)系時注重弧所對的圓周角的三種情況:圓心在圓周角的一邊上、圓心在圓周角內(nèi)部、圓心在圓周角外部.

(在教師引導下完成)

(1)當圓心在圓周角的一邊上時,圓周角與相應(yīng)的圓心角的關(guān)系:(演示圖形)觀察得知圓心在圓周角上時,圓周角是圓心角的一半.

提出必須用嚴格的數(shù)學方法去證實.

證實:(圓心在圓周角上)

(2)其它情況,圓周角與相應(yīng)圓心角的關(guān)系:

當圓心在圓周角外部時(或在圓周角內(nèi)部時)引導學生作輔助線將問題轉(zhuǎn)化成圓心在圓周角一邊上的情況,從而運用前面的結(jié)論,得出這時圓周角仍然等于相應(yīng)的圓心角的結(jié)論.

證實:作出過C的直徑(略)

圓周角定理:一條弧所對的

周角等于它所對圓心角的一半.

說明:這個定理的證實我們分成三種情況.這體現(xiàn)了數(shù)學中的分類方法;在證實中,后兩種都化成了第一種情況,這體現(xiàn)數(shù)學中的化歸思想.(對A層學生滲透完全歸納法)

(三)定理的應(yīng)用

1、例題:如圖OA、OB、OC都是圓O的半徑,∠AOB=2∠BOC.

求證:∠ACB=2∠BAC

讓學生自主分析、解得,教師規(guī)范推理過程.

說明:①推理要嚴密;②符號“”應(yīng)用要嚴格,教師要講清.

2、鞏固練習:

(1)如圖,已知圓心角∠AOB=100°,求圓周角∠ACB、∠ADB的度數(shù)?

(2)一條弦分圓為1:4兩部分,求這弦所對的圓周角的度數(shù)?

說明:一條弧所對的圓周角有無數(shù)多個,卻這條弧所對的圓周角的度數(shù)只有一個,但一條弦所對的圓周角的度數(shù)只有兩個.

(四)總結(jié)

知識:(1)圓周角定義及其兩個特征;(2)圓周角定理的內(nèi)容.

思想方法:一種方法和一種思想:

在證實中,運用了數(shù)學中的分類方法和“化歸”思想.分類時應(yīng)作到不重不漏;化歸思想是將復雜的問題轉(zhuǎn)化成一系列的簡單問題或已證問題.

(五)作業(yè)教材P100中習題A組6,7,8

第二、三課時圓周角(二、三)

教學目標:

(1)把握圓周角定理的三個推論,并會熟練運用這些知識進行有關(guān)的計算和證實;

(2)進一步培養(yǎng)學生觀察、分析及解決問題的能力及邏輯推理能力;

(3)培養(yǎng)添加輔助線的能力和思維的廣闊性.

教學重點:圓周角定理的三個推論的應(yīng)用.

教學難點:三個推論的靈活應(yīng)用以及輔助線的添加.

教學活動設(shè)計:

(一)創(chuàng)設(shè)學習情境

問題1:畫一個圓,以B、C為弧的端點能畫多少個圓周角?它們有什么關(guān)系?

問題2:在⊙O中,若=,能否得到∠C=∠G呢?根據(jù)什么?反過來,若土∠C=∠G,是否得到=呢?

(二)分析、研究、交流、歸納

讓學生分析、研究,并充分交流.

注重:①問題解決,只要構(gòu)造圓心角進行過渡即可;②若=,則∠C=∠G;但反之不成立.

老師組織學生歸納:

推論1:同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等.

重視:同弧說明是“同一個圓”;等弧說明是“在同圓或等圓中”.

問題:“同弧”能否改成“同弦”呢?同弦所對的圓周角一定相等嗎?(學生通過交流獲得知識)

問題3:(1)一個非凡的圓弧——半圓,它所對的圓周角是什么樣的角?

(2)假如一條弧所對的圓周角是90°,那么這條弧所對的圓心角是什么樣的角?

學生通過以上兩個問題的解決,在教師引導下得推論2:

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦直徑.

指出:這個推論是圓中一個很重要的性質(zhì),為在圓中確定直角、成垂直關(guān)系創(chuàng)造了條件,要熟練把握.

啟發(fā)學生根據(jù)推論2推出推論3:

推論3:假如三角形一邊上的中線等于這邊的一半,那么這個三角是直角三角形.

指出:推論3是下面定理的逆定理:在直角三角形中,斜邊上的中線等于斜邊的一半.

(三)應(yīng)用、反思

例1、如圖,AD是△ABC的高,AE是△ABC的外接圓直徑.

求證:AB·AC=AE·AD.

對A層同學,讓學生自主地分析問題、解決問題,進行生生交流,師生交流;其他層次的學生在教師引導下完成.

交流:①分析解題思路;②作輔助線的方法;③解題推理過程(要規(guī)范).

解(略)

教師引導學生思考:(1)此題還有其它證法嗎?(2)比較以上證法的優(yōu)缺點.

指出:在解圓的有關(guān)問題時,經(jīng)常需要添加輔助線,構(gòu)成直徑上的圓周角,以便利用直徑上的圓周角是直角的性質(zhì).

變式練習1:如圖,△ABC內(nèi)接于⊙O,∠1=∠2.

求證:AB·AC=AE·AD.

變式練習2:如圖,已知△ABC內(nèi)接于⊙O,弦AE平分

∠BAC交BC于D.

求證:AB·AC=AE·AD.

指出:這組題目比較典型,圓和相似三角形有密切聯(lián)系,證實圓中某些線段成比例,經(jīng)常需要找出或通過輔助線構(gòu)造出相似三角形.

例2:如圖,已知在⊙O中,直徑AB為10厘米,弦AC為6厘米,∠ACB的平分線交⊙O于D;

求BC,AD和BD的長.

解:(略)

說明:充分利用直徑所對的圓周角為直角,解直角三角形.

練習:教材P96中1、2

(四)小結(jié)(指導學生共同小結(jié))

知識:本節(jié)課主要學習了圓周角定理的三個推論.這三個推論各具特色,作用各異,在今后的學習中應(yīng)用十分廣泛,應(yīng)熟練把握.

能力:在解圓的有關(guān)問題時,經(jīng)常需要添加輔助線,構(gòu)成直徑所對的圓周角或構(gòu)成相似三角形,這種基本技能技巧一定要把握.

(五)作業(yè)

教材P100.習題A組9、10、12、13、14題;另外A層同學做P102B組3,4題.

探究活動

我們已經(jīng)學習了“圓周角的度數(shù)等于它所對的弧的度數(shù)的一半”,但當角的頂點在圓外(如圖①稱圓外角)或在圓內(nèi)(如圖②稱圓內(nèi)角),它的度數(shù)又和什么有關(guān)呢?請?zhí)骄?

提示:(1)連結(jié)BC,可得∠E=(的度數(shù)—的度數(shù))

(2)延長AE、CE分別交圓于B、D,則∠B=的度數(shù),

∠C=的度數(shù),

∴∠AEC=∠B∠C=(的度數(shù)的度數(shù)).

钟祥市| 蒙自县| 嘉义县| 阿勒泰市| 库伦旗| 凌海市| 余姚市| 姚安县| 青龙| 六枝特区| 翁牛特旗| 弥勒县| 蕲春县| 思茅市| 通山县| 通化市| 威宁| 灌南县| 泰安市| 东乡族自治县| 天全县| 栖霞市| 剑阁县| 黔西县| 梓潼县| 天峻县| 民乐县| 买车| 南部县| 灵丘县| 西乌| 积石山| 兴文县| 七台河市| 哈巴河县| 临漳县| 武隆县| 凤阳县| 苗栗市| 科技| 玉山县|