在线观看av毛片亚洲_伊人久久大香线蕉成人综合网_一级片黄色视频播放_日韩免费86av网址_亚洲av理论在线电影网_一区二区国产免费高清在线观看视频_亚洲国产精品久久99人人更爽_精品少妇人妻久久免费

首頁 > 文章中心 > 量子力學的理論

量子力學的理論

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇量子力學的理論范文,相信會為您的寫作帶來幫助,發(fā)現更多的寫作思路和靈感。

量子力學的理論

量子力學的理論范文第1篇

【關鍵詞】密度算符 壓縮相干態(tài) 正規(guī)乘積

【中圖分類號】G64 【文獻標識碼】A 【文章編號】2095-3089(2015)10-0161-02

一、引言

量子力學是在19世紀末20世紀初建立和發(fā)展起來的一門科學,它的建立是20世紀劃時代的成就之一。量子力學與我們的生活密切相關,可以毫不夸張的說,沒有量子力學,就沒有人類的現代物質文明。量子力學規(guī)律已成功地運用于包括材料、化學、生命、信息和制藥等領域,對于物理專業(yè)的本科生來說,量子力學是物理學專業(yè)最重要的基礎課程之一,它是學習固體物理、材料科學、材料物理與化學、激光原理、激光物理與技術等專業(yè)課程的重要基礎[1,2]。通過量子力學的學習,使得學生能夠熟練地掌握量子力學的基本理論,具備利用量子力學基本理論分析和解決問題的能力。在物理學課程當中,量子力學的教學既是重點又是難點。

相干態(tài)[3,4]作為量子力學中的一個核心概念,不僅是量子物理學中的一個有效方法,而且是激光理論的重要支柱,對了解量子力學理論具有重要的意義,在教學和科研中都具有基礎性的作用。相干態(tài)的概念最初是薛定諤在1926年提出的[3],對于諧振子位勢,他找到了這樣的態(tài)。直到1963年格勞伯等人系統(tǒng)地建立起光子相干態(tài),并研究它的相干性與非經典性,同時又證明相干態(tài)是諧振子湮滅算符的本征態(tài)[4]?,F在相干態(tài)已被廣泛地應用于物理學的各個領域。實際上,相干態(tài)是最小測不準態(tài),而且兩個正交位相振幅算符有著相同的起伏,在相空間中,相干態(tài)的起伏呈圓形,相干態(tài)在相空間平移或者轉動時此圓保持不變。對于壓縮態(tài)而言,它是泛指一個正交相位振幅算符的起伏比相干態(tài)相應分量的起伏小的量子態(tài),其代價是另一個正交相位振幅算符的起伏增大,但兩者的乘積等同于相干態(tài)的相應量。壓縮態(tài)是一類非經典光場,呈現出非經典性質,例如反聚束效應、亞泊松分布等. 壓縮態(tài)由于其在光通訊、高精度干涉測量以及微弱信號檢測方面具有廣泛的應用前景使得對它的研究成為量子力學領域的研究熱點。

理論上,產生壓縮相干態(tài)的方式主要有對真空態(tài)先平移后壓縮(第一類壓縮相干態(tài))和先壓縮后平移(第二類壓縮相干態(tài))兩種方式,鑒于很多教材上認為這兩種方式產生的壓縮相干態(tài)完全等同,考慮到壓縮算符與平移算符的不對易,而且各量子力學教科書上每提及這兩種壓縮態(tài)的區(qū)別時闡述都比較模糊,不能向廣大讀者提供一個清晰的結論,又考慮到密度算符包含了某一個量子態(tài)的全部信息,所以有必要推導出這兩種壓縮相干態(tài)的密度算符并做分析比較,以闡明二者的異同。

二、第一類壓縮相干態(tài)

對比式(10)和(14)可知,由于產生壓縮相干態(tài)的方式不同,壓縮算符和平移算符之間不對易,得出的兩類壓縮相干態(tài)密度算符也有差異,并不是之前一些教科書里闡述的二者是完全等同的。

量子力學的理論范文第2篇

【論文摘要】 運用量子物理學的“超因果聯系”、“能量場”和“全息場”等基本理論,探討了中醫(yī)藥學的科學性,對“中醫(yī)理論體系不是科學,與現代科學思想、方法、理論、體系格格不入,應該徹底地否定、拋棄”的言論進行了駁斥。

1 超因果聯系給中醫(yī)藥學的啟示

以往所理解的因果聯系都是很直觀的,因果直接對應,甚至一一對應。但量子物理學[2]揭示出來的基本粒子間的相互聯系則可以是超系統(tǒng)超時空的。一個幾率波能夠與宇宙中的任何其他部分發(fā)生聯系,且不管它們之間相距多遠,作用之間都沒有時間間隔。這是一個令愛因斯坦都無法接受的結論,約翰貝爾卻在1964年給出了一個數學證明,并把它叫做“貝爾定理”。緊接著,法國物理學家又用實驗證明了基本粒子確實受空間和時間中存在的不可見聯系的影響。這個結論使得已經搖搖欲墜的牛頓-笛卡兒宇宙模型最終徹底崩塌。

基于貝爾定理-非局部的不可見的因果律,量子物理學給予第四個啟示:人所受的影響是無時無處不在的,疾病發(fā)生發(fā)展所涉及的因果聯系復雜到無法測定的程度,并且總有醫(yī)療以外的因素在起作用。學者不應該去向建立在已經徹底崩塌了的牛頓-笛卡兒宇宙模型上的“科學”俯首稱臣[1],也沒有必要再用這種科學去解釋“陰陽、表里、寒熱、虛實”,去分離中藥的有效成分。應該承認西醫(yī)通過現代檢測手段檢測到了某些病因,但同時應該清醒地認識到這些病因也和通過“望、聞、問、切”所發(fā)現的病因一樣,遠不是導致患者生病的全部原因。既不能過于迷信那些沒有思維的儀器,也不能在審癥求因的縝密思維過程中過于武斷和粗疏,因為中醫(yī)畢竟是非常私人化的經驗醫(yī)學,師承有別,流派各異,或溫熱,或寒涼……都不乏奇效之例,也都有失誤之診。如何參佐為用,這不僅與醫(yī)者能否將《內經》、《難經》、《傷寒雜病論》、《醫(yī)宗金鑒》等中醫(yī)典籍爛熟于心有關,還與醫(yī)者是否具有杰出的思維能力和豐富的臨床經驗密切相關。現在,中醫(yī)已經按照西醫(yī)的思維方式和醫(yī)療模式走了近一個世紀的“現代化”道路,傳統(tǒng)的一對一師承關系“化”成了班級授課制的中醫(yī)學院,傳授了知識,丟掉了意會,遺失了自己的傳統(tǒng)和精華,培養(yǎng)了一批會在西醫(yī)理論指導下運用中藥的實際上已經不能再被稱作是中醫(yī)的中醫(yī)師。如果目前這種情況再持續(xù)十年,現有的能夠按照中醫(yī)思路看病的兩三萬中醫(yī)大夫都退休,中國也就沒有中醫(yī),“療病之功,莫先于藥”的中藥也就變成了一堆沒有用處的垃圾。目前中國中醫(yī)的狀況是何等的危急。

2 能量場給中醫(yī)藥學的啟示

從量子物理學中涌現出來的最激動人心的概念就是能量場。在原子尺度上,場無處不在。這不是想象中的可視的實體,它們是基本粒子的相互作用。這正象磁鐵的磁場不可見,但它能使鐵屑產生圖案一樣。基本粒子跳著永恒之舞[3],它們之間或吸引,或排斥,互相碰撞,并以光子的形式釋放或吸收能量,構筑起一張統(tǒng)一的、連接著整個宇宙的原子關系網。如果說經典物理學的核心隱喻是一臺機械鐘的話,那么量子物理學的核心則是一張無所不在的原子關系網。

基于能量場的概念,量子物理學給了第五個啟示:應該從“場”的角度來理解醫(yī)藥。醫(yī)藥的作用,對于患者來說,本身就是一種能量場的作用。在這個能量場中,對靶點的直接阻斷所起的作用往往是不持久的,因為阻斷或消滅

的只是一個靶點,對于存在于整個能量場中的導致這個靶點出現的、現在還無法知道的種種因素,是無法將其一一阻斷或消滅的[4]。這些因素很有可能又會在其他地方構成新的靶點,這也就是西醫(yī)常說的病灶轉移。

中醫(yī)雖然也沒有從能量場的高度來認識人的生命過程,但它的經絡學說是不是與能量場理論有異曲同工之妙,是五千年的經驗使然?就目前的科學發(fā)展水平而言,別說愛因斯坦的“統(tǒng)一場論”遠未建立,丁肇中的“反物質”還只是一種猜想,就連量子物理學的基礎理論都還處于完善和發(fā)展階段,現在就要對積五千年經驗于一體的中醫(yī)藥學說進行科學闡釋,也許是為時太早了?,F在不得而知,留待未來的科學去證明吧。當然,也沒有必要輕信他人的毀謗而忍痛割愛。中醫(yī)藥學千萬不能重蹈舊行為主義心理學的覆轍,鬧出“因為笑才高興,因為哭才傷心”這樣的笑話來。

3 全息場給中醫(yī)藥學的啟示

杰出的物理學家戴維玻姆把場看作是宇宙之海中的漩渦,提出了用“全息場”來解釋量子事件的非局部關聯理論。他把不可見的隱藏的現實稱作內含或者“折疊”的秩序,而把外部實在稱為引申或者“伸展”的秩序[5]。在他看來,正是“感知透鏡”在不斷地變化,才有折疊秩序中不同的側面不斷地伸展開來。

全息圖是用激光在一個全息盤上創(chuàng)建干涉圖式而產生的。光盤本身并沒有什么可分辨圖形,只是當一束激光穿過它,就“好象在池塘中扔了一把小石子”時才出現的一串串同心圓圈罷了。全息盤有一個重要的屬性,就是不管這個盤子破成多少片,每一個碎片都包含著所有的完整信息,只是碎片越小,信息就越模糊而已。

基于全息場理論,量子物理學給予了第六個啟示:就象“盲人摸象”這個古老寓言所揭示的那樣,面對外部世界和人的內在世界那“折疊”的內含秩序,在根本上是“盲”的-無法知道大象的完全的實在,而只能有關于它們的直覺的有限的經驗。中醫(yī)的耳針療法,在過去看起來,也許近似天方夜譚,現在從全息場理論的角度來看它,也許是一個極好的例證。因為西醫(yī)只承認可以檢測到的“伸展”的秩序,而拒絕承認現在還無法檢測到的“折疊”的秩序,所以,它往往比寧愿“舍癥從脈”的中醫(yī)更盲,也更不科學。

一言以蔽之曰,西醫(yī)是建立在經典物理學基礎上的科學,現在量子物理學已經讓牛頓-笛卡兒宇宙模型徹底崩塌了,學者沒有理由再相信它是嚴格意義上的科學;中醫(yī)藥學是在幾千年經驗的基礎上通過格物致知而形成的理論體系,20世紀以前從未受過經典物理學的影響,它很可能與量子物理學和未來科學有著更多的相通之處[6],中醫(yī)研究者應該堅定不移地自己走自己的路,力求中醫(yī)藥學的卓然自立,而完全沒有必要去顧及別人的多嘴多舌。

參考文獻

[1] F卡普拉.物理學之“道”-近代物理學與東方神秘主義.北京出版社,1999.

[2] 阿萊斯泰爾雷.量子物理學:幻象還是真實.江蘇人民出版社,2000.

[3] 戴維林德利.命運之神應置何方.吉林人民出版社.

[4] 羅杰S瓊斯.普通人的物理世界.江蘇人民出版社,1998.

量子力學的理論范文第3篇

關鍵詞:量子力學 量子力學發(fā)展 質子和粒子

前言:量子力學是對牛頓物理學的根本否定。l9世紀末正當人們?yōu)榻浀湮锢砣〉弥卮蟪删蜌g呼的時候,一系列經典理論無法解釋的現象一個接一個地發(fā)現了。在經典力學時期,物理學所探討的主要是那些描述用比較直接的試驗研究就可以接觸到的物理現象的定律和理論。在宏觀和慢速的世界中,牛頓定律和麥克斯韋電磁理論是很好的自然定律。而對于發(fā)生在原子和粒子這樣小的物體中的物理現象,經典物理學就顯得無能為力,很多現象沒法解釋。

1.量子力學的起源

量子論起源于經典物理學體系中出現的反常的經驗問題,以及相伴隨的概念問題。量子力學的發(fā)展主要歸功于四位物理學家。德國的海森伯于1926年作出了量子力學理論的第一種表述。利用矩陣力學的理論,求得描述原子內部電子行為的一些可觀察量的正確數值。接著,奧地利的薛定諤發(fā)表了波動力學,是量子力學的另一種數學表述。同年,德國的伯恩對上述兩種數學表述作出可以接受的物理解釋,并首先使用“量子力學”這個名詞。1928年,英國的狄拉克又把上面的理論加以推廣,并與狹義相對論結合起來。

量子力學是對牛頓物理學的根本否定。牛頓認為物質是由粒子組成的,粒子是一個實體,量子力學認為粒子是波,波是無邊無際的。牛頓認為宇宙是一部機器,可以把研究對象分成幾部分,然后對每一部分進行研究。量子力學認為自然界是深深地連通著的,一定不能把微觀體系看成是由可以分開的部分組成的。因為兩個粒子從實體看可以分開,從波的角度他們是糾纏在一起的。牛頓認為宇宙是可以預言的,而量子力學認為,自然界在微觀層次上是由隨機性和機遇支配的。牛頓認為自然界的變化是連續(xù)的,量子力學認為自然界的變化是以不連續(xù)的方式發(fā)生的。

2.量子力學的形成

2.1 量子假說的提出

1900年l2月14日,德國物理學家普朗克在柏林德國物理學會一次會議上提出了黑體輻射定律的推導,這一天被認為是量子力學理論的誕辰日。在推導輻射強度作為波長和絕對溫度函數的理論表達式時,普朗克假設構成腔壁的原子的行經像極小電磁振子,各振子均有一個振蕩的特征頻率。振子發(fā)射電磁能量于空腔中,并自空腔中吸收電磁能量,因此可以由在輻射平衡狀態(tài)的振子的特性而推出空腔輻射的特性。而關于原子的振子,普朗克作了兩項

根本的假設,現簡述如下:

① 振子不能為“任何能量”,只能為:

(1)

式中:為振子頻率,為常數(現稱為普朗克常數),只能為整數(現稱為量子數),(1)式斷言振子的能量只能是一份一份的,而不能是連續(xù)的,即振子能量是量子化的。

②振子并不連續(xù)放射能量,僅能以“跳躍”方式放射,或稱“量子式”放射。當振子自一量狀態(tài)改變至另一態(tài)時,即放出能量量子。因此,當改變一個單位時,放射之能量為:

只要振子仍在同一量子狀態(tài),則既不放射能量也不吸收能量。

2.2 愛因斯坦利用量子假說揭開光電效應之謎

愛因斯坦根據普朗克的量子假設推理認為:如果一個振動電荷的能量是量子化的,那么它的能量變化只能是從一個允許的能量瞬時地躍遷到另一個允許的能量,因為根本不允許它具有任何中間的能量值。而能量守恒就意味著,發(fā)射出的輻射必須是以一股瞬時的輻射進發(fā)的形式從振動電荷產生出來,而不是電磁波理論所預言的長時間的連續(xù)波。愛因斯坦得出結論:輻射永遠以一個個小包、小粒子的形式出現,但不是象質子、電子那樣的實物粒子。這些新粒子是輻射構成的;它們是可見光粒子、紅外光粒子、 射線粒子等等。這些輻射粒子叫做光子。光子和實物粒子不同:它們永遠以光速運動;它們的靜止質量為零;振動的帶電粒子產生光子。

3.量子力學的宇宙觀

在原子的量子理論的探討中,從對氫原子的研究中發(fā)現,氫原子有無數個量子態(tài)。而電子多于一個的原子有更復雜的量子態(tài),這些量子態(tài)都從求解適合于該特定原子的薛定諤方程,并且要求其場剛好環(huán)繞原子核產生駐波而求得。由于這些量子態(tài)的每一個都是有特定頻率的駐波,并且波的頻率和它的能量相聯系,預期每個量子態(tài)只有一個特殊的能量。這就是說,預期任何一個態(tài)的能量不會有任何量子不確定性??梢詫γ總€態(tài)的能量大小作合理的猜測。由于質子作用于電子的力是吸引力,要把一個電子向外拖到離原子核更遠的地方就必須做功。因此電子離原子核越遠,電子的電磁能量就越高。

量子理論的中心思想是,一切東西都由不可預言的粒子構成,但這些粒子的統(tǒng)計行為遵循一種可以預言的波動圖樣。1927年,德國物理學家海森伯發(fā)現,這種波粒二象性意味著,微觀世界具有一種內稟的,可以量化的不確定性。量子理論的最大特點也許是它的不確定性。量子不確定的實質是,完全相同的物理情況將導致不同的結果。哥本哈根學派解釋的結論是,微觀事件真的是不可預言的。而且,當我們說一個微觀粒子的位置是不確定的時候,意思并不僅僅是我們缺乏有關其位置的知識。相反,意思是這個粒子的確沒有確定的位置

結語:量子力學在低速、微觀的現象范圍內具有普遍適用的意義。它是現代物理學基礎之一,在現代科學技術中的表面物理、半導體物理、凝聚態(tài)物理、粒子物理、低溫超導物理、量子化學以及分子生物學等學科的發(fā)展中,都有重要的理論意義。量子力學的產生和發(fā)展標志著人類認識自然實現了從宏觀世界向微觀世界的重大飛躍。

參考文獻

[1] 曾謹言.量子力學導論[M].2版.北京大學出版社,2OOO.

量子力學的理論范文第4篇

人們通常把愛因斯坦與玻爾之間關于如何理解量子力學的爭論,看成是繼地心說與日心說之后科學史上最重要的爭論之一。就像地心說與日心說之爭改變了人們關于世界的整個認知圖景一樣,愛因斯坦與玻爾之間的爭論也蘊含著值得深入探討的對理論意義與概念變化的全新理解以及關于世界的不同看法。有趣的是,他們倆人雖然都對量子力學的早期發(fā)展做出了重要貢獻,但是,愛因斯坦在最早基于普朗克的量子概念提出并運用光量子概念成功地解釋了光電效應,以及運用能量量子化概念推導出固體比熱的量子論公式之后,卻從量子論的奠基者,變成了量子力學的最強烈的反對者,甚至是最尖銳的批評家。截然相反的是,玻爾在1913年同樣基于普朗克的量子概念提出了半經典半量子的氫原子模型之后,卻成為量子力學的哥本哈根解釋的奠基人。愛因斯坦對量子力學的反對,不是質疑其數學形式,而是對成為主流的量子力學的哥本哈根解釋深感不滿。這些不滿主要體現在愛因斯坦與玻爾就量子力學的基礎性問題展開的三次大論戰(zhàn)中。他們的第一次論戰(zhàn)是在1927年10月24日至29日在布魯塞爾召開的第五屆索爾未會議上進行的。這次會議由洛倫茲主持,其目的是為討論量子論的意義提供一個最高級的論壇。在這次會議上,愛因斯坦第一次聽到了玻爾的互補性觀點,并試圖通過分析理想實驗來駁倒玻爾—海森堡的解釋。這一次論戰(zhàn)以玻爾成功地捍衛(wèi)了互補性詮釋的邏輯無矛盾性而結束;第二次大論戰(zhàn)是于1930年10月20日至25日在布魯塞爾召開并由朗子萬主持的第六屆索爾未會議上進行的。在這次會議上,關于量子力學的基礎問題仍然是許多與會代表所共同關心的主要論題。愛因斯坦繼續(xù)設計了一個“光子箱”的理想實驗,試圖從相對論來玻爾的解釋。但是,在這個理想實驗中,愛因斯坦求助于自己創(chuàng)立的相對論來反駁海森堡提出的不確定關系,反倒被玻爾發(fā)現他的論證本身包含了駁倒自己推論的關鍵因素而放棄。

當這兩個理想實驗都被玻爾駁倒之后,愛因斯坦雖然不再懷疑不確定關系的有效性和量子理論的內在自洽性。但是,他對整個理論的基礎是否堅實仍然缺乏信任。1931年之后,愛因斯坦對量子力學的哥本哈根解釋的質疑采取了新的態(tài)度:不是把理想實驗用作正面攻擊海森堡的不確定關系的武器,而是試圖通過設計思想實驗導出一個邏輯悖論,以證明哥本哈根解釋把波函數理解成是描述單個系統(tǒng)行為的觀點是不完備的,而不再是證明邏輯上的不一致。在這樣的思想主導下,第三次論戰(zhàn)的焦點就集中于論證量子力學是不完備的觀點。1935年發(fā)表的EPR論證的文章正是在這種背景下撰寫的。從寫作風格上來看,EPR論證既不是從實驗結果出發(fā),也不再是完全借助于思想實驗來進行,而是把概念判據作為討論的邏輯前提。這樣,EPR論證就把討論量子力學是否完備的問題,轉化為討論量子力學能否滿足文章提供的概念判據的問題。由于這些概念判據事實上就是哲學假設,這就進一步把是否滿足概念判據的問題,推向了潛在地接受什么樣的哲學假設的問題。例如,EPR論證在文章的一開始就開門見山地指出:“對于一種物理理論的任何嚴肅的考查,都必須考慮到那個獨立于任何理論之外的客觀實在同理論所使用的物理概念之間的區(qū)別。這些概念是用來對應客觀實在的,我們利用它們來為自己描繪出實在的圖像。為了要判斷一種物理理論成功與否,我們不妨提出這樣兩個問題:(1)“這理論是正確的嗎?”(2)“這理論所作的描述是完備的嗎?”只有在對這兩個問題都具有肯定的答案時,這種理論的一些概念才可說是令人滿意的。”〔3〕從哲學意義上來看,這段開場白至少蘊含了兩層意思,其一,物理學家之所以能夠運用物理概念來描繪客觀實在,是因為物理概念是對客觀實在的表征,由這些表征描繪出的實在圖像,是可想象的。這是真理符合論的最基本的形式,也反映了經典實在論思想的核心內容;其二,如果一個理論是令人滿意的,當且僅當,這個理論既正確,又完備。那么,什么是正確的理論與完備的理論呢?EPR論證認為,理論的正確性是由理論的結論同人的經驗的符合程度來判斷的。只有通過經驗,我們才能對實在作出一些推斷,而在物理學里,這些經驗是采取實驗和量度的形式的。〔4〕也就是說,理論正確與否是根據實驗結果來判定的,正確的理論就是與實驗結果相吻合的理論。但文章接著申明說,就量子力學的情況而言,只討論完備性問題。言外之意是,量子力學是正確的,即與實驗相符合,但不一定是完備的。為了討論完備性問題,文章首先不加證論地給出了物理理論的完備性條件:如果一個物理理論是完備的,那么,物理實在的每一元素都必須在這個物理理論中有它的對應量。物理實在的元素必須通過實驗和量度來得到,而不能由先驗的哲學思考來確定?;谶@種考慮,他們又進一步提供了關于物理實在的判據:“要是對于一個體系沒有任何干擾,我們能夠確定地預測(即幾率等于1)一個物理量的值,那末對應于這一物理量,必定存在著一個物理實在的元素?!?/p>

文章認為,這個實在性判據盡管不可能包括所有認識物理實在的可能方法,但只要具備了所要求的條件,就至少向我們提供了這樣的一種方法。只要不把這個判據看成是實在的必要條件,而只看成是一個充足條件,那末這個判據同經典實在觀和量子力學的實在觀都是符合的。綜合起來,這兩個判據的意思是說,如果一個物理量能夠對應于一個物理實在的元素,那么,這個物理量就是實在的;如果一個物理理論的每一個物理量都能夠對應于物理實在的一個元素,那么,這個物理學理論就是完備的。然而,根據現有的量子力學的基本假設,當兩個物理量(比如,位置X與動量P)是不可對易的量(即,XP≠PX)時,我們就不可能同時準確地得到它們的值,即得到其中一個物理量的準確值,就會排除得到另一個物理量的準確值的可能,因為對后一個物理量的測量,會改變體系的狀態(tài),破壞前者的值。這是海森堡的不確定關系所要求的。于是,他們得出了兩種選擇:要么,(1)由波動函數所提供的關于實在的量子力學的描述是不完備的;要么,(2)當對應于兩個物理量的算符不可對易時,這兩個物理量就不能同時是實在的。他們在進行了這樣的概念闡述之后,接著設想了曾經相互作用過的兩個系統(tǒng)分開之后的量子力學描述,然后,根據他們給定的判據,得出量子力學是不完備的結論。EPR論證發(fā)表不久,薛定諤在運用數學觀點分折了EPR論證之后,以著名的“薛定諤貓”的理想實驗為例,提出了一個不同于EPR論證,但卻支持EPR論證觀點的新的論證進路。出乎意料的是,愛因斯坦卻在1936年6月19日寫給薛定諤的一封信中透露說,EPR論文是經過他們三個人的共同討論之后,由于語言問題,由波多爾斯基執(zhí)筆完成的,他本人對EPR的論證沒有充分表達出他自己的真實觀點表示不滿。從愛因斯坦在1948年撰寫的“量子力學與實在”一文來看,愛因斯坦對量子力學的不完備性的論證主要集中于量子理論的概率特征與非定域性問題。他認為,物理對象在時空中是獨立存在的,如果不做出這種區(qū)分,就不可能建立與檢驗物理學定律。因此,量子力學“很可能成為以后一種理論的一部分,就像幾何光學現在合并在波動光學里面一樣:相互關系仍然保持著,但其基礎將被一個包羅得更廣泛的基礎所加深或代替?!憋@然,愛因斯坦后來對量子力學的不完備性問題的論證比EPR論證更具體、更明確。EPR論證中的思想實驗只是隱含了對非定域性的質疑,但沒有明朗化。但就論證問題的哲學前提而言,愛因斯坦與EPR論證基本上沒有實質性的區(qū)別。因此,本文下面只是從哲學意義上把EPR論證看成是基于經典物理學的概念體系來理解量子力學的一個例證來討論,而不準備專門闡述愛因斯坦本人的觀點。

二、玻爾的反駁與量子整體性

玻爾在EPR論證發(fā)表后不久很快就以與EPR論文同樣的題目也在《物理學評論》雜志上發(fā)表了反駁EPR論證的文章。玻爾在這篇文章中重申并升華了他的互補觀念。玻爾認為,EPR論證的實在性判據中所講的“不受任何方式干擾系統(tǒng)”的說法包含著一種本質上的含混不清,是建立在經典測量觀基礎上的一種理想的說法。因為在經典測量中,被測量的對象與測量儀器之間的相互作用通??梢员缓雎圆挥?,測量結果或現象被無歧義地認為反映了對象的某一特性。但是,在量子測量系統(tǒng)中,不僅曾經相互作用過的兩個粒子,在空間上彼此分離開之后,仍然必須被看成是一個整體,而且,被測量的量子系統(tǒng)與測量儀器之間存在著不可避免的相互作用,這種相互作用將會在根本意義上影響量子對象的行為表現,成為獲得測量結果或實驗現象的一個基本條件,從而使人們不可能像經典測量那樣獨立于測量手段來談論原子現象。玻爾把量子現象對測量設置的這種依賴性稱為量子整體性(whole-ness)。

在玻爾看來,為了明確描述被測量的對象與測量儀器之間的相互作用,希望把對象與儀器分離開來的任何企圖,都會違反這種基本的整體性。這樣,在量子測量中,量子對象的行為失去了經典對象具有的那種自主性,即量子測量過程中所觀察到的量子對象的行為表現,既屬于量子對象,也屬于實驗設置,是兩者相互作用的結果。因此,在量子測量中,“觀察”的可能性問題變成了一個突出的認識論問題:我們不僅不能離開觀察條件來談論量子現象,而且,試圖明確地區(qū)分對象的自主行為以及對象與測量儀器之間的相互作用,不再是一件可能的事情。玻爾指出,“確實,在每一種實驗設置中,區(qū)分物理系統(tǒng)的測量儀器與研究客體的必要性,成為在對物理現象的經典描述與量子力學的描述之間的原則性區(qū)別?!薄?〕海森堡也曾指出,“在原子物理學中,不可能再有像經典物理學意義下的那種感知的客觀化可能性。放棄這種客觀化可能性的邏輯前提,是由于我們斷定,在觀察原子現象的時候,不應該忽略觀察行動所給予被觀察體系的那種干擾。對于我們日常生活中與之打交道的那些重大物體來說,觀察它們時所必然與之相連的很小一點干擾,自然起不了重要作用。”

另一方面,作用量子的發(fā)現,揭示了量子世界的不連續(xù)性。這種不連續(xù)性觀念的確立,又相應地導致了一系列值得思考的根本問題。首先,就經典概念的運用而言,一旦我們所使用的每一個概念或詞語,不再以連續(xù)性的觀念為基礎,它們就會成為意義不明確的概念或詞語。如果我們希望仍然使用這些概念來描述量子現象,那么,我們所付出的代價是,限制這些概念的使用范圍和精確度。對于完備地反映微觀物理實在的特性而言,描述現象所使用的經典概念是既相互排斥又相互補充的。這是玻爾的互補性觀念的精神所在。有鑒于此,玻爾認為,EPR論證根本不會影響量子力學描述的可靠性,反而是揭示了按照經典物理學中傳統(tǒng)的自然哲學觀點或經典實在論來闡述量子測量現象時存在的本質上的不適用性。他指出:“在所有考慮的這些現象中,我們所處理的不是那種以任意挑選物理實在的各種不同要素而同時犧牲其他要素為其特征的一種不完備的描述,而是那種對于本質上不同的一些實驗裝置和實驗步驟的合理區(qū)分;……事實上,在每一個實驗裝置中對于物理實在描述的這一個或那一個方面的放棄(這些方面的結合是經典物理學方法的特征,因而在此意義上它們可以被看作是彼此互補的),本質上取決于量子論領域中精確控制客體對測量儀器反作用的不可能性;這種反作用也就是指位置測量時的動量傳遞,以及動量測量時的位移。正是在這后一點上,量子力學和普通統(tǒng)計力學之間的任何對比都是在本質上不妥當的———不管這種對比對于理論的形式表示可能多么有用。事實上,在適于用來研究真正的量子現象的每一個實驗裝置中,我們不但必將涉及對于某些物理量的值的無知,而且還必將涉及無歧義地定義這些量的不可能性?!逼浯危土孔用枋龅目赡苄远?,玻爾認為,我們“位于”世界之中,不可能再像在經典物理學中那樣扮演“上帝之眼”的角色,站在世界之外或從“外部”來描述世界,不可能獲得作為一個整體的世界的知識。玻爾把這種描述的可能性與心理學和認知科學中對自我認識的可能性進行了類比。在心理學和認知科學中,知覺主體本身是進行自我意識的一部分這一事實,限制了對自我認識的純客觀描述的可能性。用玻爾形象化的比喻來說,在生活的舞臺上,我們既是演員,又是觀眾。因此,量子描述的客觀性位于理想化的純客觀描述與純主觀描述之間的某個地方。

為此,玻爾認為,物理學的任務不是發(fā)現自然界究竟是怎樣的,而是提供對自然界的描述。海森堡也曾指出,在原子物理學領域內,“我們又尖銳地碰到了一個最基本的真理,即在科學方面我們不是在同自然本身而是在同自然科學打交道。”愛因斯坦則堅持認為,在科學中,我們應當關心自然界在干什么,物理學家的工作不是告訴人們關于自然界能說些什么。愛因斯坦的觀點是EPR論證所蘊含的。這兩種理論觀之間的分歧,事實上,不僅是有沒有必要考慮和闡述包括概念、儀器等認知中介的作用的分歧,而且是能否把量子力學納入到經典科學的思維方式當中的分歧。EPR論證以經典科學的方法論與認識論為前提,認為正確的科學理論理應是對自然界的正確反映,認知中介對測量結果不會產生實質性的影響;而玻爾與海森堡則以接受量子測量帶來的認識論教益為前提,認為量子力學已經失去了經典科學具有的那種概念與物理實在之間的一一對應關系,認知中介的設定成為人類認識微觀世界的基本前提。第三,就主體與客體的關系問題而言,EPR論證認為,認知主體與客體之間存在著明確的分界線。這意味著,所有的主體都能對客體進行同樣的描述,并且他們描述現象所用的概念與語言是無歧義的。無歧義意味著對概念或語言的意義的理解是一致的。而對于量子測量而言,對客體的描述包含了主體遵守的作為世界組成部分的描述條件的說明,從而顯現了一種新的主客體關系。為此,我們可以把主體與客體之間的關系劃分為三類:其一,能夠在主體與客體之間劃出分界線,所有的主體對客體的描述都是相同的,EPR論證屬于此類;其二,能夠在主體與客體之間劃出分界線,但主體對客體的描述是因人而異的,人們對藝術品的欣賞屬于此類;其三,不可能在主體與客體之間劃出分界線,主體對客體的描述包括了對測量條件的描述在內,玻爾對EPR論證的反駁屬于此類。顯然,EPR論證隱含的主客體關系與玻爾所理解的量子測量中的主客體關系之間存在著實質性的差別。EPR論證是沿襲了經典實在論的觀點,而玻爾的觀點代表了他基于量子力學的形式體系總結出來的某種新的認識。在這里,就像不能用歐幾里得幾何的時空觀來反對非歐幾何的時空觀一樣,我們也不能用經典意義上的理論觀反對量子意義上的理論觀。因此,可以說,物理學家關于如何理解量子力學問題的爭論,在很大程度上,蘊含了他們關于科學研究的哲學假設之間的爭論。

三、實驗的形而上學

EPR論證不僅引發(fā)了量子物理學家關于物理學基礎理論問題的哲學討論,而且還創(chuàng)立了“實驗的形而上學”,提供了物理學家如何基于形而上學的觀念之爭,最終探索出通過實驗檢驗其結論的一個典型案例。這一過程與尋找量子論的隱變量解釋的努力聯系在一起。量子力學的隱變量解釋的最早方案是德布羅意在1927年提出的“導波”理論。1932年,馮•諾意曼在他的《量子力學的數學基礎》一書中曾根據量子力學的概念體系提出了四個假設,并且證明,隱變量理論和他的第四個假設(即,可加性假設)相矛盾,認為通過設計隱變量的觀念來把量子理論置于決定論體系之中的任何企圖都注定是失敗的。馮•諾意曼的這一工作在為量子論的隱變量解釋判了死刑的同時,也極大地支持了量子力學的哥本哈根解釋。有意思的是,曾是量子力學的哥本哈根解釋的支持者與傳播者的玻姆,在1951年基于量子力學的哥本哈根精神出版了至今仍然有影響的《量子理論》一書,并在書的結尾,以EPR論證為基礎,提出了“量子理論同隱變量不相容的一個證明”之后,從1952年開始反而致力于從邏輯上為量子力學提供一種隱變量解釋的研究。

玻姆闡述隱變量理論的目標可以大致概括為兩個方面,一是試圖用能夠直覺想象的概念為量子概率和量子測量提供一種可理解的說明,證明為量子論提供一個決定論的基礎是可行的;二是希望從邏輯上表明,隱變量理論是有可能的,“不論這種理論是多么抽象和‘玄學’?!辈D返淖非箫@然是一種信念的支撐,而不是事實之使然。在這種信念的引導下,玻姆在1952年連續(xù)發(fā)表了兩篇闡述隱變量理論的文章,在這些文章中,他用經典方式定義波函數,假定微觀粒子像經典粒子一樣總是具有精確的位置和精確的動量,闡述了一種可能的量子論的隱變量解釋,最后,用一個粒子的兩個自旋分量代替EPR論證中的坐標與動量,討論了EPR論證的思想實驗,并運用量子場與量子勢概念解釋了測量一個粒子的位置影響第二個粒子的動量的原因。

貝爾在讀了玻姆的文章之后,認為有必要重新系統(tǒng)地研究量子力學的基本問題。貝爾試圖解決的矛盾是:如果馮•諾意曼的證明成立,那么,怎么會有可能建立一個邏輯上無矛盾的隱變量理論呢?為了搞明白問題,貝爾首先重新剖析了馮•諾意曼的關于隱變量的不可能性的證明和EPR論證中設想的思想實驗,然后,抓住了隱變量理論的共同本質,于1964年發(fā)表了“關于EPR悖論”的文章。在這篇文章中,貝爾引述了用自旋函數來表述EPR論證的玻姆說法,或者說,從EPR—玻姆的思想實驗出發(fā),以轉動不變的獨立波函數描述組合系統(tǒng)的態(tài),推導出一個不同于量子力學預言的、符合定域隱變量理論的關于自旋相關度的不等式,通常稱為貝爾不等式或貝爾定理,然后,用歸謬法了量子力學的預言和貝爾不等式相符的可能性,說明任何定域的隱變量理論,不論它的變數的本性是什么,都在某些參數上同量子力學相矛盾。貝爾還假設,如果所進行的兩個測量在空間上彼此相距甚遠,那么,沿著一個磁場方向的測量,將不會影響到另一個測量結果。貝爾把這個假設稱為“定域性假設”。從這個假設出發(fā),貝爾指出,如果我們可以從第一個測量結果預言第二個測量結果,測量可以沿著任何一個坐標軸來進行,那么,測量的結果一定是已經預先確定了的。但是,由于波函數不對這種預先確定的量提供任何描述,所以,這種預定的結果一定是通過決定論的隱變量來獲得的。貝爾后來申明說,他在“關于EPR悖論”一文中假設的是定域性,而不是決定論,決定論是一種推斷,不是一個假設,或者說,貝爾的這篇文章是從定域性推論出決定論,而不是開始于決定論的隱變量。從邏輯前提上來看,貝爾的假設更接近于愛因斯坦的假設,他們都把“定域性條件”看成是比“決定論前提”更基本的概念。因此,貝爾的工作比馮•諾意曼和玻姆的工作更進一步地推進了關于量子力學的根本特征的理解。貝爾的這篇文章具有劃時代的意義。它不僅成為20世紀下半葉物理學與哲學研究中引用率最高的文獻之一,而且為進一步設計具體的實驗來澄清量子力學的內在本性邁出了決定性的一步。粒子物理學家斯塔普(HenryStapp)甚至把貝爾定理的提出說成是“意義最深遠的科學發(fā)現?!?/p>

同EPR論證一樣,貝爾的這一發(fā)現也不是從實驗中總結出來的,而是基于哲學信念的邏輯推理的結果。此后,量子物理學界進一步推廣貝爾定理的理論研究與具體實驗方案的探索工作并行不悖地開展起來。而這些工作都與EPR論證相關。就實驗進展而言,物理學界承認,阿斯佩克特等人于1982年關于“實現EPR-玻姆思想實驗”的實驗結果,支持了量子力學,針對這樣的實驗結果,貝爾指出:“依我看,首先,人們必定說,這些結果是所預料到的。因為它們與量子力學預示相一致。量子力學畢竟是科學的一個極有成就的科學分支,很難相信它可能是錯誤的。盡管如此,人們還是認為,我也認為值得做這種非常具體的實驗。這種實驗把量子力學最奇特的一個特征分離了出來。原先,我們只是信賴于旁證。量子力學從沒有錯過。但現在我們知道了,即使在這些非??量痰臈l件下,它也不會錯的?!?/p>

雖然EPR論證的初衷是希望證明量子力學是不完備的,還沒有提出量子測量的非定域性概念,但是,物理學家則通常運用EPR思想實驗的術語來討論非定域性問題。經過40多年的發(fā)展,具體的實驗結果使EPR論證失去了對量子力學的挑戰(zhàn)性。一方面,這些實驗證實了非定域性是所有量子論的一個基本屬性,要求把在同一個物理過程中生成的兩個相關粒子永遠當作一個整體來對待,不能分解為兩個獨立的個體,其中,一個粒子發(fā)生任何變化,另一個粒子必定同時發(fā)生相應的變化,這種相互影響與它們的空間距離無關;另一方面,這些實驗也表明了EPR論證提供的哲學假設不再是判斷量子力學是否完備的有效前提,而是反過來提醒我們需要重新思考玻爾在反駁EPR論證的觀點中所蘊含的哲學啟迪??偠灾珽PR論證盡管是基于哲學假設,運用思想實驗,來駁斥量子力學的完備性,但在客觀上,物理學家圍繞這一論證的討論,最終在思想實驗的基礎上出乎意料地發(fā)展出可以具體操作的實驗方案,并且獲得了有效的實驗結果。這一段歷史發(fā)展不僅證明,無論在哲學假設的問題上,還是在物理概念的意義理解的問題上,量子力學都不是對經典物理學的補充和擴展,是一個蘊含有新的哲學假設的理論。正是在這種意義上,物理學家玻恩得出了“理論物理學是真正的哲學”的斷言。

四、認識論的思維方式

如前所述,EPR論證—玻姆—貝爾這條發(fā)展主線是把對物理學問題鑲嵌在哲學信念中進行思考的。這一歷史片斷揭示出,基于哲學信念的邏輯推理在物理學的理論研究與實驗研究中起到了積極的認知作用。一方面,在這些探索方式中,不論是EPR論證的真理符合論假設,玻姆的決定論假設,還是貝爾的定域性假設,它們的初衷都是希望能夠把量子力學納入到經典物理學的概念框架或哲學信念之中。另一方面,檢驗貝爾不等式的物理學實驗結果對量子力學的支持和對貝爾不等式的違背意味著,我們不應該依舊固守經典物理學的哲學假設來質疑量子力學,而是應該顛倒過來,積極主動地揭示量子力學蘊含的哲學思想,以進一步明確經典物理學的哲學假設的適用范圍。

但是,這種視域的逆轉不是簡單地倡導用量子力學的哲學假設取代經典物理學的哲學假設,也不是武斷地主張用玻爾的理論觀替代EPR論證所蘊含的理論觀,而是提倡擺脫習以為常的自然哲學的思維方式,確立認識論的思維方式。自然哲學的思維方式是一種本體論化的思維方式。這種思維方式是從古希臘延續(xù)下來的,追求概念與實在之間的直接的一一對應關系,忽視或缺乏對認知過程中不可避免的認知中介和理論框架的考慮。從起源上來講,這種無視認知中介的本體論化的思維方式,源于常識,是對常識的一種延伸外推與精致化。近代自然科學的發(fā)展進一步強化與鞏固了這種思維方式。EPR論證也是基于這種思維方式使經典科學蘊含的哲學假設以具體化的判據形式呈現出來。然而,與過去的物理學理論所不同的是。量子力學不再是關于可存在量(beable)的理論,而是關于可觀察量(observable)的理論,“是理論決定我們的觀察內容”這一句話,既是愛因斯坦創(chuàng)立相對論的感想,也為海森堡提出不確定關系提供了觀念啟迪。就理論形式而言,量子力學的理論描述用的是數學語言,而不是日常語言。用數學語言描述的微觀世界是一個多位空間的世界,而我們作為人類,很難直觀地想象這樣的世界,更不可能直接“進入”這個世界來“觀看”一切。人類感知的這種局限性是原則性的,從而限制了我們對微觀世界的知識的全面獲得。用玻爾的話來說,我們對一個微觀對象的最大限度的知識不可能從單個實驗中獲得,而只能從既相互排斥又相互補充的實驗安排中獲得。用玻恩的話來說,在量子測量中,觀察與測量并不是指自然現象本身,而是一種投影。

量子力學的理論范文第5篇

【關鍵詞】量子力學;教學方法;物理思想

“量子力學”是20世紀物理學對人類科學研究兩大標志性貢獻之一,已經成為理工科專業(yè)最重要的基礎課程之一,學生熟練掌握量子力學的基本概念和基本理論,具備利用量子力學理論分析問題和解決問題的能力。對提高學生科學素,養(yǎng)培養(yǎng)學生的探索精神和創(chuàng)新意識及亦具有十分重要的意義。但是,量子力學理論與學生長期以來接觸到的經典物理體系相去甚遠,尤其是處理問題的思路和手段與經典物理截然不同,但它們之間又不無關聯,許多量子力學中的基本概念和基本理論是類比經典物理中的相關內容得出的。思維上的沖突導致學生在學習這門課程時困惑不堪。此外,這門課程理論性較強,眾多學生陷于煩瑣的數學推導之中,導致學習興趣缺失。針對這些教學中的問題,如何激發(fā)學生學習本課程的熱情,充分調動學生的積極性和主動性,已經成為擺在教師面前的重要課題。對“量子力學”課程的教學內容應作一些合理的調整。

1 合理安排教學內容

1.1 理清脈絡,強化知識背景

從經典物理所面臨的困難出發(fā),到半經典半量子理論的形成,最終到量子理論的建立,對量子力學的發(fā)展脈絡進行細致的、實事求是的分析,特別是對量子理論早期的概念發(fā)展有一個準確清晰的理解,弄清楚到底哪些概念和原理是已經證明為正確并得到公認的,還存在哪些不完善的地方。這樣一方面可使學生對量子力學中基本概念和基本理論的形成和建立的科學歷史背景有一深刻了解,有助于學生理清經典物理與量子理論之間的界限和區(qū)別,加深他們對這些基本概念和基本理論的理解;另一方面,可使學生對蘊藏在這一歷程中的智慧火花和科學思維方法有一全面的了解,有助于培養(yǎng)學生的創(chuàng)新意識及科學素養(yǎng)。比如:對于玻爾理論,由于對量子化假設很難用已經成形的經典理論來解釋,學生往往會覺得不可思議,難以理解。為此,在講解這部分內容時,很有必要介紹一下玻爾理論產生的歷史背景,告訴學生在玻爾的量子化假設之前就已經出現了普朗克的量子論和愛因斯坦的光量子概念,且大量關于原子光譜的實驗數據也已經被掌握,之前盧瑟福提出的簡單行星模型卻與經典物理理論及實驗事實存在嚴重背離。為了解決這些問題,玻爾理論才應運而生。在用量子力學求解氫原子定態(tài)波函數時,還可以通過定態(tài)波函數的概率分布圖,向學生介紹所謂的玻爾軌道并不是真實存在的,只是電子出現幾率比較大的區(qū)域。通過這樣講述,學生可以清晰地體會到玻爾理論的承上啟下的作用,而又不至于將其與量子力學中的概念混為一談。

1.2 重在物理思想,壓縮數學推導

在物理學研究中,數學只是用來表述物理思想并在此基礎上進行邏輯演算的工具,教師不能將深刻的物理思想淹沒在復雜的數學形式之中。因此,在教學過程中,教師要著重于加強基本概念和基本理論的講授,把握這些概念和理論中所蘊含的物理實質。對一些涉及繁難數學推導的內容,在教學中刻意忽略具體數學推導過程,著重于使學生掌握其中的思想方法。例如:在一維線性諧振子問題的教學中,對于數學方面的問題,只要求學生能正確寫出薛定諤方程、記住其結論即可,重點放在該類問題所蘊含的物理意義及對現成結論的應用上。這樣,學生就不會感到枯燥無味,而能始終保持較高的學習熱情。

2 改進教學方法

“量子力學”這門課程本身實驗基礎薄弱、理論性較強,物理圖像不夠直觀,一味采取傳統(tǒng)的灌輸式教學,學生勢必感到枯燥,甚至厭煩。學習效果自然大打折扣。為了提高學生學習興趣,激發(fā)其學習的積極性,培養(yǎng)其科學探索精神及創(chuàng)新能力,在教學方法上應進行積極的探索。

2.1 發(fā)揮學生主體作用

在必要的教學內容講解外,每節(jié)課都留出一定的師生互動時間。教師通過創(chuàng)設問題情景,引導學生進行研究討論,或者針對已講授內容,使學生對已學內容進行復習、總結、辨析,以加深理解;或者針對未講授內容,激發(fā)學生學習新知識的興趣(比如,在講授完一維無限深方勢阱和一維線性諧振子這

兩個典型的束縛態(tài)問題后就可引導學生思考“非束縛態(tài)下微觀粒子又將表現出什么樣的行為”),這樣學生就會積極地預習下節(jié)內容;或者選擇一些有代表性的習題,讓學生提出不同的解決辦法,培養(yǎng)學生的創(chuàng)新能力。對于在課堂上不能解決的問題,積極鼓勵學生利用圖書館及網絡資源等尋求解決,培養(yǎng)學生的科學探索精神。此外,還可使學生自由組合,挑選他們感興趣的與課程有關的題目進行討論、調研并完成小組論文,這一方面激發(fā)學生的自主學習積極性,另一方面使其接受初步的科研訓練,一舉兩得。

2.2 注重構建物理圖像

在實際教學中著重注意物理圖像的構建,使學生對一些難以理解的概念和理論形成較為直觀的印象,從而形成深刻的記憶和理解。例如:借助電子束衍射實驗,通過三個不同的實驗過程(強電子束、弱電子束及弱電子束長時間曝光),即可為實物粒子的波粒二象性構建出一幅清晰的物理圖像;借助電子束衍射實驗圖像,再以光波類比電子波,即可凝練出波函數的統(tǒng)計解釋;借助電子雙縫衍射實驗圖像,可使學生更易接受和理解態(tài)疊加原理;借助解析幾何中的坐標系,可很好地為學生建立起表象的物理圖像。盡管這其中光波和電子波、坐標系和表象這些概念之間有本質上的區(qū)別,但借助這些學生已經熟知和深刻理解的概念,可使學生非常容易地接受和理解量子力學中難以言明的概念和理論,同時,也可使學生掌握這種物理圖像的構建能力,對培養(yǎng)學生的創(chuàng)新思維具有非常積極地作用。

3 教學手段和考核方式改革

3.1 課程教學采用多種先進的教學方式

如安排小組討論課,對難于理解的概念和規(guī)律進行討論。先是各小組內討論,再是小組間辯論,最后老師對各小組討論和辯論的觀點進行評述和指正。例如,在講到微觀粒子的波函數時,有的學生會認為是全部粒子組成波函數,有的學生會認為是經典物理學的波。這些問題的討論激發(fā)了學生的求知欲望,從而進一步激發(fā)了學生對一些不易理解的概念和量子原理進行深入理解,直至最后充分理解這些內容。另外課程作業(yè)布置小論文,邀請國內外專家開展系列量子力學講座等都是不錯的方式。

3.2 堅持研究型教學方式

把課程教學和科研相結合,在教學過程中針對教學內容,吸取科研中的研究成果,通過結合最新的科研動態(tài),向學生講授在相關領域的應用以培養(yǎng)學生學習興趣。在量子力學誕生后,作為現代物理學的兩大支柱之一的現代物理學的每一個分支及相關的邊緣學科都離不開量子力學這個基礎,量子理論與其他學科的交叉越來越多。例如:基本粒子、原子核、原子、分子、凝聚態(tài)物理到中子星、黑洞各個層次的研究以量子力學為基礎;量子力學在通信和納米技術中的應用;量子理論在生物學中的應用;量子力學與正在研究的量子計算機的關系等,在教學中適當地穿插這些知識,擴大學生的知識面,消除學生對量子力學的片面認識,提高學生學習興趣和主動性。

量子力學從誕生到發(fā)展的物理學史所包含的創(chuàng)新思維是迄今為止哪一門學科都難以比擬的。在20世紀初,經典物理學晴空萬里,然而黑體輻射、光電效應、原子光譜等物理現象的實驗結果嚴重沖擊經典物理學理論,讓經典物理學陷入危機四伏的境地。量子力學的誕生,開啟了人類科學發(fā)展的新思維。開展好量子力學的教學活動,在教學過程中展現量子力學數學形式之美,使學生在科學海洋中得到美的享受,有利于極大的提高學生的科學素養(yǎng),從精神上熏陶他們的創(chuàng)新精神。

【參考文獻】

[1]周世勛.量子力學教程[m].高教出版社,1979.

花莲县| 浮山县| 商都县| 区。| 勃利县| 高密市| 新营市| 固安县| 东平县| 霞浦县| 察哈| 图木舒克市| 梁平县| 邵武市| 六安市| 永康市| 江源县| 渝北区| 东海县| 栾川县| 南涧| 兴业县| 安阳县| 蒙城县| 洱源县| 旌德县| 伊通| 铁岭市| 监利县| 松江区| 惠来县| 册亨县| 马山县| 乌兰县| 岚皋县| 温宿县| 绥化市| 兖州市| 仁布县| 通许县| 西吉县|