前言:本站為你精心整理了初中數(shù)學(xué)教案單項(xiàng)式的乘法范文,希望能為你的創(chuàng)作提供參考價(jià)值,我們的客服老師可以幫助你提供個(gè)性化的參考范文,歡迎咨詢。
教學(xué)建議
一、知識結(jié)構(gòu)
二、重點(diǎn)、難點(diǎn)分析
本節(jié)的重點(diǎn)是:單項(xiàng)式乘法法則的導(dǎo)出.這是因?yàn)閱雾?xiàng)式乘法法則的導(dǎo)出是對學(xué)生已有的數(shù)學(xué)知識的綜合運(yùn)用,滲透了“將未知轉(zhuǎn)化為已知”的數(shù)學(xué)思想,蘊(yùn)含著“從特殊到一般”的認(rèn)識規(guī)律,是培養(yǎng)學(xué)生思維能力的重要內(nèi)容之一.
本節(jié)的難點(diǎn)是:多種運(yùn)算法則的綜合運(yùn)用.是因?yàn)閱雾?xiàng)式的乘法最終將轉(zhuǎn)化為有理數(shù)乘法、同底數(shù)冪相乘、冪的乘方、積的乘方等運(yùn)算,對于初學(xué)者來說,由于難于正確辯論和區(qū)別各種不同的運(yùn)算以及運(yùn)算所使用的法則,易于將各種法則混淆,造成運(yùn)算結(jié)果的錯(cuò)誤.
三、教法建議
本節(jié)課在教學(xué)過程中的不同階段可以采用了不同的教學(xué)方法,以適應(yīng)教學(xué)的需要.
(1)在新課學(xué)習(xí)階段的單項(xiàng)式的乘法法則的推導(dǎo)過程中,可采用引導(dǎo)發(fā)現(xiàn)法.通過教師精心設(shè)計(jì)的問題鏈,引導(dǎo)學(xué)生將需要解決的問題轉(zhuǎn)化成用已經(jīng)學(xué)過的知識可以解決的問題,充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用,學(xué)生始終處在觀察思考之中.
(2)在新課學(xué)習(xí)的例題講解階段,可采用講練結(jié)合法.對于例題的學(xué)習(xí),應(yīng)圍繞問題進(jìn)行,教師引導(dǎo)學(xué)生通過觀察、思考,尋求解決問題的方法,在解題的過程中展開思維.與此同時(shí)還進(jìn)行多次有較強(qiáng)針對性的練習(xí),分散難點(diǎn).對學(xué)生分層進(jìn)行訓(xùn)練,化解難點(diǎn).并注意及時(shí)矯正,使學(xué)生在前面出現(xiàn)的錯(cuò)誤,不致于影響后面的學(xué)習(xí),為后而后學(xué)習(xí)掃清障礙.通過例題的講解,教師給出了解題規(guī)范,并注意對學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng).
(3)本節(jié)課可以師生共同小結(jié),旨在訓(xùn)練學(xué)生歸納的方法,并形成相應(yīng)的知識系統(tǒng),進(jìn)一步防范學(xué)生在運(yùn)算中容易出現(xiàn)的錯(cuò)誤.
教學(xué)設(shè)計(jì)示例
一、教學(xué)目的
1.使學(xué)生理解并掌握單項(xiàng)式的乘法法則,能夠熟練地進(jìn)行單項(xiàng)式的乘法計(jì)算.
2.注意培養(yǎng)學(xué)生歸納、概括能力,以及運(yùn)算能力.
3.通過單項(xiàng)式的乘法法則在生活中的應(yīng)用培養(yǎng)學(xué)生的應(yīng)用意識.
二、重點(diǎn)、難點(diǎn)
重點(diǎn):掌握單項(xiàng)式與單項(xiàng)式相乘的法則.
難點(diǎn):分清單項(xiàng)式與單項(xiàng)式相乘中,冪的運(yùn)算法則.
三、教學(xué)過程
復(fù)習(xí)提問:
什么是單項(xiàng)式?什么叫單項(xiàng)式的系數(shù)?什么叫單項(xiàng)式的次數(shù)?
引言我們已經(jīng)學(xué)習(xí)了冪的運(yùn)算性質(zhì),在這個(gè)基礎(chǔ)上我們可以學(xué)習(xí)整式的乘法運(yùn)算.先來學(xué)最簡單的整式乘法,即單項(xiàng)式之間的乘法運(yùn)算(給出標(biāo)題).
新課看下面的例子:計(jì)算
(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).
同學(xué)們按以下提問,回答問題:
(1)2x2y·3xy2
①每個(gè)單項(xiàng)式是由幾個(gè)因式構(gòu)成的,這些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根據(jù)乘法結(jié)合律重新組合
2x2y·3xy2=2·x2·y·3·x·y2
③根據(jù)乘法交換律變更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根據(jù)乘法結(jié)合律重新組合
2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根據(jù)有理數(shù)乘法和同底數(shù)冪的乘法法則得出結(jié)論
2x2y·3xy2=6x3y3
按以上的分析,寫出(2)的計(jì)算步驟:
(2)4a2x2·(-3a3bx)
=4a2x2·(-3)a3bx
=[4·(-3)]·(a2·a3)·(x2·x)·b
=(-12)·a5·x3·b
=-12a5bx3.
通過以上兩題,讓學(xué)生總結(jié)回答,歸納出單項(xiàng)式乘單項(xiàng)式的運(yùn)算步驟是:
①系數(shù)相乘為積的系數(shù);
②相同字母因式,利用同底數(shù)冪的乘法相乘,作為積的因式;
③只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)也作為積的一個(gè)因式;
④單項(xiàng)式與單項(xiàng)式相乘,積仍是一個(gè)單項(xiàng)式;
⑤單項(xiàng)式乘法法則,對于三個(gè)以上的單項(xiàng)式相乘也適用.
看教材,讓學(xué)生仔細(xì)閱讀單項(xiàng)式與單項(xiàng)式相乘的法則,邊讀邊體會邊記憶.
利用法則計(jì)算以下各題.
例1計(jì)算以下各題:
(1)4n2·5n3;
(2)(-5a2b3)·(-3a);
(3)(-5an+1b)·(-2a);
(4)(4×105)·(5×106)·(3×104).
解:(1)4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2)(-5a2b3)·(-3a)
=[(-5)·(-3)]·(a2·a)·b3
=15a3b3;
(3)(-5an+1b)·(-2a)
=[(-5)·(-2)]·(an+1·a)b
=10an+2b;
(4)(4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2計(jì)算以下各題(讓學(xué)生回答):
(3)(-5amb)·(-2b2);
(4)(-3ab)(-a2c)·6ab2.
=3x3y3;
(3)(-5amb)·(-2b2);
=[(-5)·(-2)]·am·(b·b2)
=10amb3
(4)(-3ab)·(-a2c)·6ab2
=[(-3)·(-1)·6]·(aa2a)·(bb2)·c
=18a4b3c.
小結(jié)單項(xiàng)式與單項(xiàng)式相乘是整式乘法中的重要內(nèi)容,它的運(yùn)算法則的導(dǎo)出主要依據(jù)是,乘法的交換律與結(jié)合律以及冪的運(yùn)算性質(zhì).
初中數(shù)學(xué) 初中英語 初中地理 初中生演講稿 初中生物實(shí)驗(yàn) 初中優(yōu)化設(shè)計(jì) 初中國防教育 初中生論文 初中生教育培訓(xùn) 初中物理 紀(jì)律教育問題 新時(shí)代教育價(jià)值觀