在线观看av毛片亚洲_伊人久久大香线蕉成人综合网_一级片黄色视频播放_日韩免费86av网址_亚洲av理论在线电影网_一区二区国产免费高清在线观看视频_亚洲国产精品久久99人人更爽_精品少妇人妻久久免费

首頁 > 文章中心 > 函數(shù)教案

函數(shù)教案

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇函數(shù)教案范文,相信會為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。

函數(shù)教案

函數(shù)教案范文第1篇

2.若集合A中有m個元素,集合B中有n個元素,則從A到B可建立nm個映射

3.函數(shù)定義:函數(shù)就是定義在非空數(shù)集A,B上的映射,此時稱數(shù)集A為定義域,象集C={f(x)|x∈A}為值域。定義域,對應(yīng)法則,值域構(gòu)成了函數(shù)的三要素

4.相同函數(shù)的判斷方法:①定義域、值域;②對應(yīng)法則(兩點必須同時具備)

5.求函數(shù)的定義域常涉及到的依據(jù)為①分母不為0;②偶次根式中被開方數(shù)不小于0;③對數(shù)的真數(shù)大于0,底數(shù)大于零且不等于1;④零指數(shù)冪的底數(shù)不等于零;⑤實際問題要考慮實際意義⑥注意同一表達式中的兩變量的取值范圍是否相互影響

6.函數(shù)解析式的求法:

①定義法(拼湊):②換元法:③待定系數(shù)法④賦值法7.函數(shù)值域的求法:

①換元配方法。如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域。②判別式法。一個二次分式函數(shù)在自變量沒有限制時就可以用判別式法去值域。其方法是將等式兩邊同乘以dx2+ex+f移項整理成一個x的一元二次方程,方程有實數(shù)解則判別式大于等于零,得到一個關(guān)于y的不等式,解出y的范圍就是函數(shù)的值域。

③單調(diào)性法。如果函數(shù)在給出的定義域區(qū)間上是嚴格單調(diào)的,那么就可以利用端點的函數(shù)值來求出值域

8.函數(shù)單調(diào)性的證明方法:

第一步:設(shè)x1、x2是給定區(qū)間內(nèi)的兩個任意的值,且x1

第二步:作差¦(x1)-&brVBar;(x2),并對“差式”變形,主要采用的方法是“因式分解”或“配方法”;

第三步:判斷差式¦(x1)-&brVBar;(x2)的正負號,從而證得其增減性

9、函數(shù)圖像變換知識

①平移變換:

形如:y=f(x+a):把函數(shù)y=f(x)的圖象沿x軸方向向左或向右平移

|a|個單位,就得到y(tǒng)=f(x+a)的圖象。

形如:y=f(x)+a:把函數(shù)y=f(x)的圖象沿y軸方向向上或向下平移|a|個單位,就得到y(tǒng)=f(x)+a的圖象

②.對稱變換y=f(x)y=f(-x),關(guān)于y軸對稱

y=f(x)y=-f(x),關(guān)于x軸對稱

③.翻折變換

y=f(x)y=f|x|,(左折變換)

把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱

y=f(x)y=|f(x)|(上折變換)

把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱

10.互為反函數(shù)的定義域與值域的關(guān)系:原函數(shù)的定義域和值域分別是反函數(shù)的值域及定義域;

11.求反函數(shù)的步驟:①求反函數(shù)的定義域(即y=f(x)的值域)②將x,y互換,得y=f–1(x);③將y=f(x)看成關(guān)于x的方程,解出x=f–1(y),若有兩解,要注意解的選擇;。

12.互為反函數(shù)的圖象間的關(guān)系:關(guān)于直線y=x對稱;

13.原函數(shù)與反函數(shù)的圖象交點可在直線y=x上,也可是關(guān)于直線y=x對稱的兩點

14.原函數(shù)與反函數(shù)具有相同的單調(diào)性

15、在定義域上單調(diào)的函數(shù)才具有反函數(shù);反之,并不成立(如y=1/x)

16.復(fù)合函數(shù)的定義域求法:

①已知y=f(x)的定義域為A,求y=f[g(x)]的定義域時,可令g(x)ÎA,求得x的取值范圍即可。

②已知y=f[g(x)]的定義域為A,求y=f(x)的定義域時,可令xÎA,求得g(x)的函數(shù)值范圍即可。

17.復(fù)合函數(shù)y=f[g(x)]的值域求法:

首先根據(jù)定義域求出u=g(x)的取值范圍A,

在uÎA的情況下,求出y=f(u)的值域即可。

18.復(fù)合函數(shù)內(nèi)層函數(shù)與外層函數(shù)在定義域內(nèi)單調(diào)性相同,則函數(shù)是增函數(shù);單調(diào)性不同則函數(shù)是減函數(shù)。增增、減減為增;增減、減增才減

①f(x)與f(x)+c(c為常數(shù))具有相同的單調(diào)性

②f(x)與c·f(x)當c>0是單調(diào)性相同,當c<0時具有相反的單調(diào)性

③當f(x)恒不為0時,f(x)與1/f(x)具有相反的單調(diào)性

④當f(x)恒為非負時,f(x)與具有相同的單調(diào)性

⑤當f(x)、g(x)都是增(減)函數(shù)時,f(x)+g(x)也是增(減)函數(shù)

設(shè)f(x),g(x)都是增(減)函數(shù),則f(x)·g(x)當f(x),g(x)兩者都恒大于0時也是增(減)函數(shù),當兩者都恒小于0時是減(增)函數(shù)

19.二次函數(shù)求最值問題:根據(jù)拋物線的對稱軸與區(qū)間關(guān)系進行分析,

Ⅰ、若頂點的橫坐標在給定的區(qū)間上,則

a>0時:在頂點處取得最小值,最大值在距離對稱軸較遠的端點處取得;

a<0時:在頂點處取得最大值,最小值在距離對稱軸較遠的端點處取得;

Ⅱ、若頂點的橫坐標不在給定的區(qū)間上,則

a>0時:最小值在離對稱軸近的端點處取得,最大值在離對稱軸遠的端點處取得;

a<0時:最大值在離對稱軸近的端點處取得,最小值在離對稱軸遠的端點處取得

20.一元二次方程實根分布問題解法:

①將方程的根視為開口向上的二次函數(shù)的圖像與x軸交點的橫坐標

②從判別式、對稱軸、區(qū)間端點函數(shù)值三方面分析限制條件

21.分式函數(shù)y=(ax+b)/(cx+d)的圖像畫法:

①確定定義域漸近線x=-d/c②確定值域漸近線y=a/c③根據(jù)y軸上的交點坐標確定曲線所在象限位置。

22.指數(shù)式運算法則23.對數(shù)式運算法則:

24.指數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(逆時針方向)越靠近y軸。

25.對數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(順時針方向)越靠近x軸。

26.比較兩個指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較

27.抽象函數(shù)的性質(zhì)所對應(yīng)的一些具體特殊函數(shù)模型:

①f(x1+x2)=f(x1)+f(x2)Þ正比例函數(shù)f(x)=kx(k¹0)

②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2)Þy=ax;

③f(x1•x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2)Þy=logax

28.如果f(a+x)=f(b-x)成立,則y=f(x)圖像關(guān)于x=(a+b)/2對稱;

特別是,f(x)=f(-x)成立,則y=f(x)圖像關(guān)于y軸對稱

29.a>f(x)恒成立Ûa>f(x)的最大值

a

函數(shù)教案范文第2篇

2.若集合A中有m個元素,集合B中有n個元素,則從A到B可建立nm個映射

3.函數(shù)定義:函數(shù)就是定義在非空數(shù)集A,B上的映射,此時稱數(shù)集A為定義域,象集C={f(x)|x∈A}為值域。定義域,對應(yīng)法則,值域構(gòu)成了函數(shù)的三要素

4.相同函數(shù)的判斷方法:①定義域、值域;②對應(yīng)法則(兩點必須同時具備)

5.求函數(shù)的定義域常涉及到的依據(jù)為①分母不為0;②偶次根式中被開方數(shù)不小于0;③對數(shù)的真數(shù)大于0,底數(shù)大于零且不等于1;④零指數(shù)冪的底數(shù)不等于零;⑤實際問題要考慮實際意義⑥注意同一表達式中的兩變量的取值范圍是否相互影響

6.函數(shù)解析式的求法:

①定義法(拼湊):②換元法:③待定系數(shù)法④賦值法7.函數(shù)值域的求法:

①換元配方法。如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域。②判別式法。一個二次分式函數(shù)在自變量沒有限制時就可以用判別式法去值域。其方法是將等式兩邊同乘以dx2+ex+f移項整理成一個x的一元二次方程,方程有實數(shù)解則判別式大于等于零,得到一個關(guān)于y的不等式,解出y的范圍就是函數(shù)的值域。

③單調(diào)性法。如果函數(shù)在給出的定義域區(qū)間上是嚴格單調(diào)的,那么就可以利用端點的函數(shù)值來求出值域

8.函數(shù)單調(diào)性的證明方法:

第一步:設(shè)x1、x2是給定區(qū)間內(nèi)的兩個任意的值,且x1

第二步:作差¦(x1)-&brVBar;(x2),并對“差式”變形,主要采用的方法是“因式分解”或“配方法”;

第三步:判斷差式¦(x1)-&brVBar;(x2)的正負號,從而證得其增減性

9、函數(shù)圖像變換知識

①平移變換:

形如:y=f(x+a):把函數(shù)y=f(x)的圖象沿x軸方向向左或向右平移

|a|個單位,就得到y(tǒng)=f(x+a)的圖象。

形如:y=f(x)+a:把函數(shù)y=f(x)的圖象沿y軸方向向上或向下平移|a|個單位,就得到y(tǒng)=f(x)+a的圖象

②.對稱變換y=f(x)y=f(-x),關(guān)于y軸對稱

y=f(x)y=-f(x),關(guān)于x軸對稱

③.翻折變換

y=f(x)y=f|x|,(左折變換)

把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱

y=f(x)y=|f(x)|(上折變換)

把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱

10.互為反函數(shù)的定義域與值域的關(guān)系:原函數(shù)的定義域和值域分別是反函數(shù)的值域及定義域;

11.求反函數(shù)的步驟:①求反函數(shù)的定義域(即y=f(x)的值域)②將x,y互換,得y=f–1(x);③將y=f(x)看成關(guān)于x的方程,解出x=f–1(y),若有兩解,要注意解的選擇;。

12.互為反函數(shù)的圖象間的關(guān)系:關(guān)于直線y=x對稱;

13.原函數(shù)與反函數(shù)的圖象交點可在直線y=x上,也可是關(guān)于直線y=x對稱的兩點

14.原函數(shù)與反函數(shù)具有相同的單調(diào)性

15、在定義域上單調(diào)的函數(shù)才具有反函數(shù);反之,并不成立(如y=1/x)

16.復(fù)合函數(shù)的定義域求法:

①已知y=f(x)的定義域為A,求y=f[g(x)]的定義域時,可令g(x)ÎA,求得x的取值范圍即可。

②已知y=f[g(x)]的定義域為A,求y=f(x)的定義域時,可令xÎA,求得g(x)的函數(shù)值范圍即可。

17.復(fù)合函數(shù)y=f[g(x)]的值域求法:

首先根據(jù)定義域求出u=g(x)的取值范圍A,

在uÎA的情況下,求出y=f(u)的值域即可。

18.復(fù)合函數(shù)內(nèi)層函數(shù)與外層函數(shù)在定義域內(nèi)單調(diào)性相同,則函數(shù)是增函數(shù);單調(diào)性不同則函數(shù)是減函數(shù)。增增、減減為增;增減、減增才減

①f(x)與f(x)+c(c為常數(shù))具有相同的單調(diào)性

②f(x)與c·f(x)當c>0是單調(diào)性相同,當c<0時具有相反的單調(diào)性

③當f(x)恒不為0時,f(x)與1/f(x)具有相反的單調(diào)性

④當f(x)恒為非負時,f(x)與具有相同的單調(diào)性

⑤當f(x)、g(x)都是增(減)函數(shù)時,f(x)+g(x)也是增(減)函數(shù)

設(shè)f(x),g(x)都是增(減)函數(shù),則f(x)·g(x)當f(x),g(x)兩者都恒大于0時也是增(減)函數(shù),當兩者都恒小于0時是減(增)函數(shù)

19.二次函數(shù)求最值問題:根據(jù)拋物線的對稱軸與區(qū)間關(guān)系進行分析,

Ⅰ、若頂點的橫坐標在給定的區(qū)間上,則

a>0時:在頂點處取得最小值,最大值在距離對稱軸較遠的端點處取得;

a<0時:在頂點處取得最大值,最小值在距離對稱軸較遠的端點處取得;

Ⅱ、若頂點的橫坐標不在給定的區(qū)間上,則

a>0時:最小值在離對稱軸近的端點處取得,最大值在離對稱軸遠的端點處取得;

a<0時:最大值在離對稱軸近的端點處取得,最小值在離對稱軸遠的端點處取得

20.一元二次方程實根分布問題解法:

①將方程的根視為開口向上的二次函數(shù)的圖像與x軸交點的橫坐標

②從判別式、對稱軸、區(qū)間端點函數(shù)值三方面分析限制條件

21.分式函數(shù)y=(ax+b)/(cx+d)的圖像畫法:

①確定定義域漸近線x=-d/c②確定值域漸近線y=a/c③根據(jù)y軸上的交點坐標確定曲線所在象限位置。

22.指數(shù)式運算法則23.對數(shù)式運算法則:

24.指數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(逆時針方向)越靠近y軸。

25.對數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(順時針方向)越靠近x軸。

26.比較兩個指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較

27.抽象函數(shù)的性質(zhì)所對應(yīng)的一些具體特殊函數(shù)模型:

①f(x1+x2)=f(x1)+f(x2)Þ正比例函數(shù)f(x)=kx(k¹0)

②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2)Þy=ax;

③f(x1•x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2)Þy=logax

28.如果f(a+x)=f(b-x)成立,則y=f(x)圖像關(guān)于x=(a+b)/2對稱;

特別是,f(x)=f(-x)成立,則y=f(x)圖像關(guān)于y軸對稱

29.a>f(x)恒成立Ûa>f(x)的最大值

a

函數(shù)教案范文第3篇

目的:要求學生掌握用“旋轉(zhuǎn)”定義角的概念,并進而理解“正角”“負角”“象限角”“終邊相同的角”的含義。

過程:一、提出課題:“三角函數(shù)”

回憶初中學過的“銳角三角函數(shù)”——它是利用直角三角形中兩邊的比值來定義的。相對于現(xiàn)在,我們研究的三角函數(shù)是“任意角的三角函數(shù)”,它對我們今后的學習和研究都起著十分重要的作用,并且在各門學科技術(shù)中都有廣泛應(yīng)用。

二、角的概念的推廣

1.回憶:初中是任何定義角的?(從一個點出發(fā)引出的兩條射線構(gòu)成的幾何圖形)這種概念的優(yōu)點是形象、直觀、容易理解,但它的弊端在于“狹隘”

2.講解:“旋轉(zhuǎn)”形成角(P4)

突出“旋轉(zhuǎn)”注意:“頂點”“始邊”“終邊”

“始邊”往往合于軸正半軸

3.“正角”與“負角”——這是由旋轉(zhuǎn)的方向所決定的。

記法:角或可以簡記成

4.由于用“旋轉(zhuǎn)”定義角之后,角的范圍大大地擴大了。

1°角有正負之分如:a=210°b=-150°g=-660°

2°角可以任意大

實例:體操動作:旋轉(zhuǎn)2周(360°×2=720°)3周(360°×3=1080°)

3°還有零角一條射線,沒有旋轉(zhuǎn)

三、關(guān)于“象限角”

為了研究方便,我們往往在平面直角坐標系中來討論角

角的頂點合于坐標原點,角的始邊合于軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個角是第幾象限的角(角的終邊落在坐標軸上,則此角不屬于任何一個象限)

例如:30°390°-330°是第Ⅰ象限角300°-60°是第Ⅳ象限角

585°1180°是第Ⅲ象限角-2000°是第Ⅱ象限角等

四、關(guān)于終邊相同的角

1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

2.終邊相同的角都可以表示成一個0°到360°的角與個周角的和

390°=30°+360°

-330°=30°-360°30°=30°+0×360°

1470°=30°+4×360°

-1770°=30°-5×360°

3.所有與a終邊相同的角連同a在內(nèi)可以構(gòu)成一個集合

即:任何一個與角a終邊相同的角,都可以表示成角a與整數(shù)個周角的和

4.例一(P5略)

五、小結(jié):1°角的概念的推廣

用“旋轉(zhuǎn)”定義角角的范圍的擴大

2°“象限角”與“終邊相同的角”

函數(shù)教案范文第4篇

1.能夠運用函數(shù)的性質(zhì),指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì)解決某些簡單的實際問題.

(1)能通過閱讀理解讀懂題目中文字敘述所反映的實際背景,領(lǐng)悟其中的數(shù)學本,弄清題中出現(xiàn)的量及其數(shù)學含義.

(2)能根據(jù)實際問題的具體背景,進行數(shù)學化設(shè)計,將實際問題轉(zhuǎn)化為數(shù)學問題,并調(diào)動函數(shù)的相關(guān)性質(zhì)解決問題.

(3)能處理有關(guān)幾何問題,增長率的問題,和物理方面的實際問題.

2.通過聯(lián)系實際的引入問題和解決帶有實際意義的某些問題,培養(yǎng)學生分析問題,解決問題的能力和運用數(shù)學的意識,也體現(xiàn)了函數(shù)知識的應(yīng)用價值,也滲透了訓練的價值.

3.通過對實際問題的研究解決,滲透了數(shù)學建模的思想.提高了學生學習數(shù)學的興趣,使學生對函數(shù)思想等有了進一步的了解.

教學建議

教材分析

(1)本小節(jié)內(nèi)容是全章知識的綜合應(yīng)用.這一節(jié)的出現(xiàn)體現(xiàn)了強化應(yīng)用意識的要求,讓學生能把數(shù)學知識應(yīng)用到生產(chǎn),生活的實際中去,形成應(yīng)用數(shù)學的意識.所以培養(yǎng)學生分析解決問題的能力和運用數(shù)學的意識是本小節(jié)的重點,根據(jù)實際問題建立數(shù)學模型是本小節(jié)的難點.

(2)在解決實際問題過程中常用到函數(shù)的知識有:函數(shù)的概念,函數(shù)解析式的確定,指數(shù)函數(shù)的概念及其性質(zhì),對數(shù)概念及其性質(zhì),和二次函數(shù)的概念和性質(zhì).在方法上涉及到換元法,配方法,方程的思想,數(shù)形結(jié)合等重要的思方法..事業(yè)本節(jié)的學習,既是對知識的復(fù)習,也是對方法和思想的再認識.

教法建議

(1)本節(jié)中處理的均為應(yīng)用問題,在題目的敘述表達上均較長,其中要分析把握的信息量較多.事業(yè)處理這種大信息量的閱讀題首先要在閱讀上下功夫,找出關(guān)鍵語言,關(guān)鍵數(shù)據(jù),特別是對實際問題中數(shù)學變量的隱含限制條件的提取尤為重要.

(2)對于應(yīng)用問題的處理,第二步應(yīng)根據(jù)各個量的關(guān)系,進行數(shù)學化設(shè)計建立目標函數(shù),將實際問題通過分析概括,抽象為數(shù)學問題,最后是用數(shù)學方法將其化為常規(guī)的函數(shù)問題(或其它數(shù)學問題)解決.此類題目一般都是分為這樣三步進行.

(3)在現(xiàn)階段能處理的應(yīng)用問題一般多為幾何問題,利潤最大,費用最省問題,增長率的問題及物理方面的問題.在選題時應(yīng)以以上幾方面問題為主.

教學設(shè)計示例

函數(shù)初步應(yīng)用

教學目標

1.能夠運用常見函數(shù)的性質(zhì)及平面幾何有關(guān)知識解決某些簡單的實際問題.

2.通過對實際問題的研究,培養(yǎng)學生分析問題,解決問題的能力

3.通過把實際問題向數(shù)學問題的轉(zhuǎn)化,滲透數(shù)學建模的思想,提高學生用數(shù)學的意識,及學習數(shù)學的興趣.

教學重點,難點

重點是應(yīng)用問題的閱讀分析和解決.

難點是根據(jù)實際問題建立相應(yīng)的數(shù)學模型

教學方法

師生互動式

教學用具

投影儀

教學過程

一.提出問題

數(shù)學來自生活,又應(yīng)用于生活和生產(chǎn)實踐.而實際問題中又蘊涵著豐富的數(shù)學知識,數(shù)學思想與方法.如剛剛學過的函數(shù)內(nèi)容在實際生活中就有著廣泛的應(yīng)用.今天我們就一起來探討幾個應(yīng)用問題.

問題一:如圖,是邊長為2的正三角形,這個三角形在直線的左方被截得圖形的面積為,求函數(shù)的解析式及定義域.(板書)

(作為應(yīng)用問題由于學生是初次研究,所以可先選擇以數(shù)學知識為背景的應(yīng)用題,讓學生研究)

首先由學生自己閱讀題目,教師可利用計算機讓直線運動起來,觀察三角形的變化,由學生提出研究方法.由學生說出由于圖形的不同計算方法也不同,應(yīng)分類討論.分界點應(yīng)在,再由另一個學生說出面積的計算方法.

當時,,(采用直接計算的方法)

當時,

.(板書)

(計算第二段時,可以再畫一個相應(yīng)的圖形,如圖)

綜上,有,

此時可以問學生這是什么函數(shù)?定義域應(yīng)怎樣計算?讓學生明確是分段函數(shù)的前提條件下,求出定義域為.(板書)

問題解決后可由教師簡單小結(jié)一下研究過程中的主要步驟(1)閱讀理解;(2)建立目標函數(shù);(3)按要求解決數(shù)學問題.

下面我們一起看第二個問題

問題二:某工廠制定了從1999年底開始到2005年底期間的生產(chǎn)總值持續(xù)增長的兩個三年計劃,預(yù)計生產(chǎn)總值年平均增長率為,則第二個三年計劃生產(chǎn)總值與第一個三年計劃生產(chǎn)總值相比,增長率為多少?(投影儀打出)

首先讓學生搞清增長率的含義是兩個三年總產(chǎn)值之間的關(guān)系問題,所以問題轉(zhuǎn)化為已知年增長率為,分別求兩個三年計劃的總產(chǎn)值.

設(shè)1999年總產(chǎn)值為,第一步讓學生依次說出2000年到2005年的年總產(chǎn)值,它們分別為:

2000年2003年

2001年2004年

2002年2005年(板書)

第二步再讓學生分別算出第一個三年總產(chǎn)值和第二個三年總產(chǎn)值

=++

=.

=++

=.(板書)

第三步計算增長率.

.(板書)

計算后教師可以讓學生總結(jié)一下關(guān)于增長率問題的研究應(yīng)注意的問題.最后教師再指出關(guān)于增長率的問題經(jīng)常構(gòu)建的數(shù)學模型為,其中為基數(shù),為增長率,為時間.所以經(jīng)常會用到指數(shù)函數(shù)有關(guān)知識加以解決.

總結(jié)后再提出最后一個問題

問題三:一商場批發(fā)某種商品的進價為每個80元,零售價為每個100元,為了促進銷售,擬采用買一個這種商品贈送一個小禮品的辦法,試驗表明,禮品價格為1元時,銷售量可增加10%,且在一定范圍內(nèi)禮品價格每增加1元銷售量就可增加10%.設(shè)未贈送禮品時的銷售量為件.

(1)寫出禮品價值為元時,所獲利潤(元)關(guān)于的函數(shù)關(guān)系式;

(2)請你設(shè)計禮品價值,以使商場獲得最大利潤.(為節(jié)省時間,應(yīng)用題都可以用投影儀打出)

題目出來后要求學生認真讀題,找出關(guān)鍵量.再引導(dǎo)學生找出與利潤相關(guān)的量.包括銷售量,每件的利潤及禮品價值等.讓學生思考后,列出銷售量的式子.再找學生說出每件商品的利潤的表達式,完成第一問的列式計算.

解:.(板書)

完成第一問后讓學生觀察解析式的特點,提出如何求這個函數(shù)的最大值(此出最值問題是學生比較陌生的,方法也是學生不熟悉的)所以學生遇到思維障礙,教師可適當提示,如可以先具體計算幾個值看一看能否發(fā)現(xiàn)規(guī)律,若看不出規(guī)律,能否把具體計算改進一下,再計算中能體現(xiàn)它是最大?也就是讓學生意識到應(yīng)用最大值的概念來解決問題.最終將問題概括為兩個不等式的求解即

(2)若使利潤最大應(yīng)滿足

同時成立即解得

當或時,有最大值.

由于這是實際應(yīng)用問題,在答案的選擇上應(yīng)考慮價值為9元的禮品贈送,可獲的最大利潤.

三.小結(jié)

通過以上三個應(yīng)用問題的研究,要學生了解解決應(yīng)用問題的具體步驟及相應(yīng)的注意事項.

四.作業(yè)略

五.板書設(shè)計

2.9函數(shù)初步應(yīng)用

問題一:

解:

問題二

分析

問題三

函數(shù)教案范文第5篇

學生的發(fā)展是新課程標準實施的出發(fā)點和歸宿,課程改革的重點是面向全體學生,以學生的發(fā)展為主體,轉(zhuǎn)變學生的學習方式?!岸魏瘮?shù)的圖像的性質(zhì)”這一課題,通過對傳統(tǒng)教法的改進,以全新的自主的學習方式讓學生接受問題挑戰(zhàn),充分展示自己的觀點和見解,給學生創(chuàng)設(shè)一種寬松、愉快、和諧、民主的科研氛圍,讓學生感受“二次函數(shù)的性質(zhì)”的探究發(fā)現(xiàn)過程,體驗研究過程,體驗成功的快樂。

教學目標

知識目標

1、利用計算機制作動畫(讓學觀察拋物線的形成過程)培養(yǎng)學生以運動變化的觀點來觀察問題、分析問題、解決問題的意識。

2、會用描點法畫出二次函數(shù)的圖像,能通過圖像認識二次函數(shù)的性質(zhì)

3、通過具體例子,在探索二次函數(shù)圖像和性質(zhì)的過程中,學會利用配方法將數(shù)字系數(shù)的二次函數(shù)表達式表示成:y=a(x-h)^2+k的形式,從而確定二次函數(shù)圖像的頂點和對稱軸。

4、通過一般式與頂點式的互化過程,了解互化的必要性。培養(yǎng)學生認識“事物都是相互聯(lián)系、相互制約”的辯證唯物主義觀點。

5、在經(jīng)歷“觀察、猜測、探索、驗證、應(yīng)用”的過程中,滲透從“形”到“數(shù)”和從“數(shù)”到“形”的轉(zhuǎn)化,培養(yǎng)了學生的轉(zhuǎn)化、遷移能力,實現(xiàn)感性到理性的升華。

情感目標

1、通過主動操作、合作交流、自主評價,改進學生的學習方式及學習質(zhì)量,激發(fā)學生的興趣,喚起好奇心與求知欲,點燃起學生智慧的火花,使學生積極思維,勇于探索,主動獲取知識。

2、讓學生在猜想與探究的過程中,體驗成功的快樂,培養(yǎng)他們主動參與的意識、協(xié)同合作的意識、勇于創(chuàng)新和實踐的科學精神。

能力目標

1、擬通過本節(jié)課的學習,培養(yǎng)學生的觀察能力、探索能力、數(shù)形結(jié)合能力、歸納概括能力,綜合培養(yǎng)學生的思維能力及創(chuàng)新能力。

2、培養(yǎng)學生運用運動變化的觀點來分析、探討問題的意識。

教學重點:二次函數(shù)的性質(zhì)

教學難點:通過研究、、、這幾類函數(shù)圖像,得出平移規(guī)律,并總結(jié)概括出二次函數(shù)的性質(zhì)。

教學方法:

運用問題解決理論指導(dǎo)教學,力求體現(xiàn)“自主學習、動手實踐、合作交流”的教學理念。

教學設(shè)備:計算機、網(wǎng)絡(luò)

[教學內(nèi)容]

步驟教學內(nèi)容呈現(xiàn)方式

復(fù)習我們已經(jīng)學習了一次函數(shù)與反比例函數(shù),那么一次函數(shù),反比例函數(shù)的圖像分別是、.用媒體方式呈現(xiàn),讓學生填空,然后提交.

探索二次函數(shù)的圖象是什么呢?(課前已經(jīng)做過)

(1)畫出圖像經(jīng)過了哪些過程?

(2)列表時自變量取了幾個數(shù)?哪幾個數(shù)?

(3)找?guī)孜煌瑢W展示一下自己畫的圖像。

(4)想一想,列表時如何合理選值?以什么數(shù)為中心?當x取互為相反數(shù)的值時,y的值如何?讓學生結(jié)合老師強調(diào)的作圖注意事項,再畫函數(shù)的圖圖像。

然后老師用畫函數(shù)工具作出的圖像。由學生觀察作比較。

教會學生用畫函數(shù)工具畫圖,讓學生比較兩種畫法,弄清學生自己所畫的不足之處.

(2)觀察函數(shù)的圖象,你能得出什么結(jié)論?

用幾何畫板呈現(xiàn)已畫好的函數(shù)圖象,讓學生觀察圖象上的點變化的過程,確認函數(shù)值隨著自變量的變化而變化的規(guī)律.

讓學生歸納函數(shù)的圖象的性質(zhì).

老師作總結(jié).

歸納:(1)二次函數(shù)的圖象是拋物線,并且開口向上;

(2)二次函數(shù)的圖象的對稱軸是軸;

(3)拋物線與對稱軸的交點叫做拋物線的頂點,那么二次函數(shù)的頂點坐標是;

(4)在對稱軸的左邊隨著的增大而減??;在對稱軸的右邊隨著的增大而增大.

實踐一

一、1.利用畫函數(shù)圖象工具在同一直角坐標系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì):

(1);

(2).

利用畫函數(shù)圖象工具。觀察、比較兩圖象之間的關(guān)系。

2.練習:利用畫函數(shù)圖象工具在同一直角坐標系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì):

(1);

(2).

學生觀察、總結(jié)、交流

二、1.利用畫函數(shù)圖象工具在同一直角坐標系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找兩圖象之間的關(guān)系:

(1),;

(2),.

利用畫函數(shù)圖象工具.

2.練習:利用畫函數(shù)圖象工具在同一直角坐標系下畫出下列函數(shù)的圖象:

,,

觀察三條拋物線的相互關(guān)系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?

利用畫函數(shù)圖象工具.

三、1.利用畫函數(shù)圖象工具在同一直角坐標系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找三個圖象之間的關(guān)系:

(1),;

(2),;

(3),.

利用畫函數(shù)圖象工具.

2.不畫出圖象,你能說明拋物線與之間的關(guān)系嗎?

四、1.利用畫函數(shù)圖象工具在同一直角坐標系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找三個圖象之間的關(guān)系:

(1),,;

(2),,;

(3),,.

利用畫函數(shù)圖象工具.教師指出就叫拋物線的頂點式。

2.把拋物線向左平移3個單位,再向下平移4個單位,所得的拋物線的函數(shù)關(guān)系式為.

討論二次函數(shù)的圖象可由函數(shù)怎樣平移而得到?

歸納:由函數(shù)的圖象沿對稱軸向上(下)平移個單位(為向上,為向下),

向右(左)平移個單位(為向右,為向左)得到函數(shù)的圖象.

實踐二1.由二次函數(shù)解析式能否寫出它的一般式.

2.討論二次函數(shù)的圖象怎樣畫,它的開口方向、對稱軸和頂點坐標分別是什么?學生努力把它變形為頂點式

牛刀小試(1)拋物線,當x=時,y有最值,是.

(2)當m=時,拋物線開口向下.

(3)已知函數(shù)是二次函數(shù),它的圖象開口,當x時,y隨x的增大而增大.

(4)拋物線的開口,對稱軸是,頂點坐標是,它可以看作是由拋物線向平移個單位得到的.

(5)函數(shù),當x時,函數(shù)值y隨x的增大而減?。攛時,函數(shù)取得最值,最值y=.

(6)畫圖填空:拋物線的開口,對稱軸是,頂點坐標是,它可以看作是由拋物線向平移個單位得到的.

(7)將拋物線如何平移可得到拋物線()

A.向左平移4個單位,再向上平移1個單位

B.向左平移4個單位,再向下平移1個單位

C.向右平移4個單位,再向上平移1個單位

D.向右平移4個單位,再向下平移1個單位

(8)拋物線可由拋物線向平移個單位,再向平移個單位而得到.

(9)二次函數(shù)的對稱軸是.

(10)二次函數(shù)的圖象的頂點是,當x時,y隨x的增大而減?。?/p>

通過網(wǎng)絡(luò)完成,然后反饋.

小結(jié)1、會用描點法畫出二次函數(shù)的圖象,概括出圖象的特點及函數(shù)的性質(zhì).

2、會用工具畫出、、、這幾類函數(shù)的圖象,通過比較,了解這幾類函數(shù)的性質(zhì).

3、熟練掌握二次函數(shù)、、、這幾類函數(shù)圖象間的平移規(guī)律.

4、能通過配方把二次函數(shù)化成+k的形式,從而確定這類二次函數(shù)的性質(zhì).

作業(yè)1.在同一直角坐標系中,畫出下列函數(shù)的圖象.

(1)(2)

2.填空:

(1)拋物線,當x=時,y有最值,是.

(2)當m=時,拋物線開口向下.

(3)已知函數(shù)是二次函數(shù),它的圖象開口,當x時,y隨x的增大而增大.

3.已知拋物線,求出它的對稱軸和頂點坐標,并畫出函數(shù)的圖象.

4.利用配方法,把下列函數(shù)寫成+k的形式,并寫出它們的圖象的開口方向、對稱軸和頂點坐標.

(1)

(2)

澳门| 阳高县| 清水河县| 安乡县| 老河口市| 柯坪县| 定州市| 南江县| 建始县| 稷山县| 云梦县| 杂多县| 三亚市| 家居| 黄平县| 正蓝旗| 咸宁市| 维西| 涡阳县| 越西县| 宁德市| 峨眉山市| 浪卡子县| 应用必备| 哈巴河县| 景宁| 张家港市| 江口县| 谷城县| 称多县| 双桥区| 西吉县| 清涧县| 瑞丽市| 余庆县| 祁东县| 达日县| 邵武市| 福泉市| 宁阳县| 山西省|